This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgredg2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| uspgredg2v.a | ⊢ 𝐴 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | ||
| uspgredg2v.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ) | ||
| Assertion | uspgredg2v | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1→ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgredg2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | uspgredg2v.a | ⊢ 𝐴 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | |
| 4 | uspgredg2v.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ) | |
| 5 | 1 2 3 | uspgredg2vlem | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
| 6 | 5 | ralrimiva | ⊢ ( 𝐺 ∈ USPGraph → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
| 8 | preq2 | ⊢ ( 𝑧 = 𝑛 → { 𝑁 , 𝑧 } = { 𝑁 , 𝑛 } ) | |
| 9 | 8 | eqeq2d | ⊢ ( 𝑧 = 𝑛 → ( 𝑦 = { 𝑁 , 𝑧 } ↔ 𝑦 = { 𝑁 , 𝑛 } ) ) |
| 10 | 9 | cbvriotavw | ⊢ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ) |
| 11 | 8 | eqeq2d | ⊢ ( 𝑧 = 𝑛 → ( 𝑥 = { 𝑁 , 𝑧 } ↔ 𝑥 = { 𝑁 , 𝑛 } ) ) |
| 12 | 11 | cbvriotavw | ⊢ ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ) |
| 13 | simpl | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ USPGraph ) | |
| 14 | eleq2w | ⊢ ( 𝑒 = 𝑦 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑦 ) ) | |
| 15 | 14 3 | elrab2 | ⊢ ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑁 ∈ 𝑦 ) ) |
| 16 | 2 | eleq2i | ⊢ ( 𝑦 ∈ 𝐸 ↔ 𝑦 ∈ ( Edg ‘ 𝐺 ) ) |
| 17 | 16 | biimpi | ⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ( Edg ‘ 𝐺 ) ) |
| 18 | 17 | anim1i | ⊢ ( ( 𝑦 ∈ 𝐸 ∧ 𝑁 ∈ 𝑦 ) → ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
| 19 | 15 18 | sylbi | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
| 21 | 13 20 | anim12i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) ) |
| 22 | 3anass | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ↔ ( 𝐺 ∈ USPGraph ∧ ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
| 24 | uspgredg2vtxeu | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) → ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑦 = { 𝑁 , 𝑛 } ) | |
| 25 | reueq1 | ⊢ ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑦 = { 𝑁 , 𝑛 } ) ) | |
| 26 | 1 25 | ax-mp | ⊢ ( ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑦 = { 𝑁 , 𝑛 } ) |
| 27 | 24 26 | sylibr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) → ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ) |
| 28 | 23 27 | syl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ) |
| 29 | eleq2w | ⊢ ( 𝑒 = 𝑥 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑥 ) ) | |
| 30 | 29 3 | elrab2 | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐸 ∧ 𝑁 ∈ 𝑥 ) ) |
| 31 | 2 | eleq2i | ⊢ ( 𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) |
| 32 | 31 | biimpi | ⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ ( Edg ‘ 𝐺 ) ) |
| 33 | 32 | anim1i | ⊢ ( ( 𝑥 ∈ 𝐸 ∧ 𝑁 ∈ 𝑥 ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
| 34 | 30 33 | sylbi | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
| 36 | 13 35 | anim12i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) ) |
| 37 | 3anass | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ↔ ( 𝐺 ∈ USPGraph ∧ ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
| 39 | uspgredg2vtxeu | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) → ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑥 = { 𝑁 , 𝑛 } ) | |
| 40 | reueq1 | ⊢ ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑥 = { 𝑁 , 𝑛 } ) ) | |
| 41 | 1 40 | ax-mp | ⊢ ( ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑥 = { 𝑁 , 𝑛 } ) |
| 42 | 39 41 | sylibr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) → ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ) |
| 43 | 38 42 | syl | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ) |
| 44 | 10 12 28 43 | riotaeqimp | ⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) ) → 𝑦 = 𝑥 ) |
| 45 | 44 | ex | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) → 𝑦 = 𝑥 ) ) |
| 46 | 45 | ralrimivva | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) → 𝑦 = 𝑥 ) ) |
| 47 | eqeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = { 𝑁 , 𝑧 } ↔ 𝑥 = { 𝑁 , 𝑧 } ) ) | |
| 48 | 47 | riotabidv | ⊢ ( 𝑦 = 𝑥 → ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) ) |
| 49 | 4 48 | f1mpt | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝑉 ↔ ( ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) → 𝑦 = 𝑥 ) ) ) |
| 50 | 7 46 49 | sylanbrc | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1→ 𝑉 ) |