This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgredg2vtxeu | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 4 | 2 3 | upgredg2vtx | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |
| 5 | 1 4 | syl3an1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |
| 6 | eqtr2 | ⊢ ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) | |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | 7 8 | preqr2 | ⊢ ( { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } → 𝑦 = 𝑥 ) |
| 10 | 6 9 | syl | ⊢ ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) |
| 11 | 10 | a1i | ⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) ∧ ( 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
| 12 | 11 | ralrimivva | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∀ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
| 13 | preq2 | ⊢ ( 𝑦 = 𝑥 → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑦 = 𝑥 → ( 𝐸 = { 𝑌 , 𝑦 } ↔ 𝐸 = { 𝑌 , 𝑥 } ) ) |
| 15 | 14 | reu4 | ⊢ ( ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ↔ ( ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ∧ ∀ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ( ( 𝐸 = { 𝑌 , 𝑦 } ∧ 𝐸 = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) ) |
| 16 | 5 12 15 | sylanbrc | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |