This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredg2v.v | |- V = ( Vtx ` G ) |
|
| uspgredg2v.e | |- E = ( Edg ` G ) |
||
| uspgredg2v.a | |- A = { e e. E | N e. e } |
||
| uspgredg2v.f | |- F = ( y e. A |-> ( iota_ z e. V y = { N , z } ) ) |
||
| Assertion | uspgredg2v | |- ( ( G e. USPGraph /\ N e. V ) -> F : A -1-1-> V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredg2v.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgredg2v.e | |- E = ( Edg ` G ) |
|
| 3 | uspgredg2v.a | |- A = { e e. E | N e. e } |
|
| 4 | uspgredg2v.f | |- F = ( y e. A |-> ( iota_ z e. V y = { N , z } ) ) |
|
| 5 | 1 2 3 | uspgredg2vlem | |- ( ( G e. USPGraph /\ y e. A ) -> ( iota_ z e. V y = { N , z } ) e. V ) |
| 6 | 5 | ralrimiva | |- ( G e. USPGraph -> A. y e. A ( iota_ z e. V y = { N , z } ) e. V ) |
| 7 | 6 | adantr | |- ( ( G e. USPGraph /\ N e. V ) -> A. y e. A ( iota_ z e. V y = { N , z } ) e. V ) |
| 8 | preq2 | |- ( z = n -> { N , z } = { N , n } ) |
|
| 9 | 8 | eqeq2d | |- ( z = n -> ( y = { N , z } <-> y = { N , n } ) ) |
| 10 | 9 | cbvriotavw | |- ( iota_ z e. V y = { N , z } ) = ( iota_ n e. V y = { N , n } ) |
| 11 | 8 | eqeq2d | |- ( z = n -> ( x = { N , z } <-> x = { N , n } ) ) |
| 12 | 11 | cbvriotavw | |- ( iota_ z e. V x = { N , z } ) = ( iota_ n e. V x = { N , n } ) |
| 13 | simpl | |- ( ( G e. USPGraph /\ N e. V ) -> G e. USPGraph ) |
|
| 14 | eleq2w | |- ( e = y -> ( N e. e <-> N e. y ) ) |
|
| 15 | 14 3 | elrab2 | |- ( y e. A <-> ( y e. E /\ N e. y ) ) |
| 16 | 2 | eleq2i | |- ( y e. E <-> y e. ( Edg ` G ) ) |
| 17 | 16 | biimpi | |- ( y e. E -> y e. ( Edg ` G ) ) |
| 18 | 17 | anim1i | |- ( ( y e. E /\ N e. y ) -> ( y e. ( Edg ` G ) /\ N e. y ) ) |
| 19 | 15 18 | sylbi | |- ( y e. A -> ( y e. ( Edg ` G ) /\ N e. y ) ) |
| 20 | 19 | adantr | |- ( ( y e. A /\ x e. A ) -> ( y e. ( Edg ` G ) /\ N e. y ) ) |
| 21 | 13 20 | anim12i | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> ( G e. USPGraph /\ ( y e. ( Edg ` G ) /\ N e. y ) ) ) |
| 22 | 3anass | |- ( ( G e. USPGraph /\ y e. ( Edg ` G ) /\ N e. y ) <-> ( G e. USPGraph /\ ( y e. ( Edg ` G ) /\ N e. y ) ) ) |
|
| 23 | 21 22 | sylibr | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> ( G e. USPGraph /\ y e. ( Edg ` G ) /\ N e. y ) ) |
| 24 | uspgredg2vtxeu | |- ( ( G e. USPGraph /\ y e. ( Edg ` G ) /\ N e. y ) -> E! n e. ( Vtx ` G ) y = { N , n } ) |
|
| 25 | reueq1 | |- ( V = ( Vtx ` G ) -> ( E! n e. V y = { N , n } <-> E! n e. ( Vtx ` G ) y = { N , n } ) ) |
|
| 26 | 1 25 | ax-mp | |- ( E! n e. V y = { N , n } <-> E! n e. ( Vtx ` G ) y = { N , n } ) |
| 27 | 24 26 | sylibr | |- ( ( G e. USPGraph /\ y e. ( Edg ` G ) /\ N e. y ) -> E! n e. V y = { N , n } ) |
| 28 | 23 27 | syl | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> E! n e. V y = { N , n } ) |
| 29 | eleq2w | |- ( e = x -> ( N e. e <-> N e. x ) ) |
|
| 30 | 29 3 | elrab2 | |- ( x e. A <-> ( x e. E /\ N e. x ) ) |
| 31 | 2 | eleq2i | |- ( x e. E <-> x e. ( Edg ` G ) ) |
| 32 | 31 | biimpi | |- ( x e. E -> x e. ( Edg ` G ) ) |
| 33 | 32 | anim1i | |- ( ( x e. E /\ N e. x ) -> ( x e. ( Edg ` G ) /\ N e. x ) ) |
| 34 | 30 33 | sylbi | |- ( x e. A -> ( x e. ( Edg ` G ) /\ N e. x ) ) |
| 35 | 34 | adantl | |- ( ( y e. A /\ x e. A ) -> ( x e. ( Edg ` G ) /\ N e. x ) ) |
| 36 | 13 35 | anim12i | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> ( G e. USPGraph /\ ( x e. ( Edg ` G ) /\ N e. x ) ) ) |
| 37 | 3anass | |- ( ( G e. USPGraph /\ x e. ( Edg ` G ) /\ N e. x ) <-> ( G e. USPGraph /\ ( x e. ( Edg ` G ) /\ N e. x ) ) ) |
|
| 38 | 36 37 | sylibr | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> ( G e. USPGraph /\ x e. ( Edg ` G ) /\ N e. x ) ) |
| 39 | uspgredg2vtxeu | |- ( ( G e. USPGraph /\ x e. ( Edg ` G ) /\ N e. x ) -> E! n e. ( Vtx ` G ) x = { N , n } ) |
|
| 40 | reueq1 | |- ( V = ( Vtx ` G ) -> ( E! n e. V x = { N , n } <-> E! n e. ( Vtx ` G ) x = { N , n } ) ) |
|
| 41 | 1 40 | ax-mp | |- ( E! n e. V x = { N , n } <-> E! n e. ( Vtx ` G ) x = { N , n } ) |
| 42 | 39 41 | sylibr | |- ( ( G e. USPGraph /\ x e. ( Edg ` G ) /\ N e. x ) -> E! n e. V x = { N , n } ) |
| 43 | 38 42 | syl | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> E! n e. V x = { N , n } ) |
| 44 | 10 12 28 43 | riotaeqimp | |- ( ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) /\ ( iota_ z e. V y = { N , z } ) = ( iota_ z e. V x = { N , z } ) ) -> y = x ) |
| 45 | 44 | ex | |- ( ( ( G e. USPGraph /\ N e. V ) /\ ( y e. A /\ x e. A ) ) -> ( ( iota_ z e. V y = { N , z } ) = ( iota_ z e. V x = { N , z } ) -> y = x ) ) |
| 46 | 45 | ralrimivva | |- ( ( G e. USPGraph /\ N e. V ) -> A. y e. A A. x e. A ( ( iota_ z e. V y = { N , z } ) = ( iota_ z e. V x = { N , z } ) -> y = x ) ) |
| 47 | eqeq1 | |- ( y = x -> ( y = { N , z } <-> x = { N , z } ) ) |
|
| 48 | 47 | riotabidv | |- ( y = x -> ( iota_ z e. V y = { N , z } ) = ( iota_ z e. V x = { N , z } ) ) |
| 49 | 4 48 | f1mpt | |- ( F : A -1-1-> V <-> ( A. y e. A ( iota_ z e. V y = { N , z } ) e. V /\ A. y e. A A. x e. A ( ( iota_ z e. V y = { N , z } ) = ( iota_ z e. V x = { N , z } ) -> y = x ) ) ) |
| 50 | 7 46 49 | sylanbrc | |- ( ( G e. USPGraph /\ N e. V ) -> F : A -1-1-> V ) |