This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaeqimp.i | ⊢ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) | |
| riotaeqimp.j | ⊢ 𝐽 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) | ||
| riotaeqimp.x | ⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) | ||
| riotaeqimp.y | ⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) | ||
| Assertion | riotaeqimp | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝑋 = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqimp.i | ⊢ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) | |
| 2 | riotaeqimp.j | ⊢ 𝐽 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) | |
| 3 | riotaeqimp.x | ⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) | |
| 4 | riotaeqimp.y | ⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) | |
| 5 | 2 | eqcomi | ⊢ ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐽 |
| 6 | 5 | eqeq2i | ⊢ ( 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ↔ 𝐼 = 𝐽 ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ↔ 𝐼 = 𝐽 ) ) |
| 8 | 7 | bicomd | ⊢ ( 𝜑 → ( 𝐼 = 𝐽 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) |
| 10 | 1 | eqeq1i | ⊢ ( 𝐼 = 𝐽 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ) |
| 11 | riotacl | ⊢ ( ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 → ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ∈ 𝑉 ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ∈ 𝑉 ) |
| 13 | 2 12 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ 𝑉 ) |
| 14 | nfv | ⊢ Ⅎ 𝑎 𝐽 ∈ 𝑉 | |
| 15 | nfcvd | ⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 𝐽 ) | |
| 16 | nfcvd | ⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 𝑋 ) | |
| 17 | 15 | nfcsb1d | ⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
| 18 | 16 17 | nfeqd | ⊢ ( 𝐽 ∈ 𝑉 → Ⅎ 𝑎 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
| 19 | id | ⊢ ( 𝐽 ∈ 𝑉 → 𝐽 ∈ 𝑉 ) | |
| 20 | csbeq1a | ⊢ ( 𝑎 = 𝐽 → 𝐴 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) | |
| 21 | 20 | eqeq2d | ⊢ ( 𝑎 = 𝐽 → ( 𝑋 = 𝐴 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑎 = 𝐽 ) → ( 𝑋 = 𝐴 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
| 23 | 14 15 18 19 22 | riota2df | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ) ) |
| 24 | 23 | bicomd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) → ( ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
| 25 | 13 3 24 | syl2anc | ⊢ ( 𝜑 → ( ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) = 𝐽 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
| 26 | 10 25 | bitrid | ⊢ ( 𝜑 → ( 𝐼 = 𝐽 ↔ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) |
| 28 | riotacl | ⊢ ( ∃! 𝑎 ∈ 𝑉 𝑋 = 𝐴 → ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) ∈ 𝑉 ) | |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → ( ℩ 𝑎 ∈ 𝑉 𝑋 = 𝐴 ) ∈ 𝑉 ) |
| 30 | 1 29 | eqeltrid | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 31 | nfv | ⊢ Ⅎ 𝑎 𝐼 ∈ 𝑉 | |
| 32 | nfcvd | ⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 𝐼 ) | |
| 33 | nfcvd | ⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 𝑌 ) | |
| 34 | 32 | nfcsb1d | ⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
| 35 | 33 34 | nfeqd | ⊢ ( 𝐼 ∈ 𝑉 → Ⅎ 𝑎 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
| 36 | id | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) | |
| 37 | csbeq1a | ⊢ ( 𝑎 = 𝐼 → 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) | |
| 38 | 37 | eqeq2d | ⊢ ( 𝑎 = 𝐼 → ( 𝑌 = 𝐴 ↔ 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑎 = 𝐼 ) → ( 𝑌 = 𝐴 ↔ 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
| 40 | 31 32 35 36 39 | riota2df | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∃! 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐼 ) ) |
| 41 | 30 4 40 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐼 ) ) |
| 42 | eqcom | ⊢ ( ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) = 𝐼 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) | |
| 43 | 41 42 | bitrdi | ⊢ ( 𝜑 → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ↔ 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) ) ) |
| 45 | csbeq1 | ⊢ ( 𝐽 = 𝐼 → ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) | |
| 46 | 45 | eqcoms | ⊢ ( 𝐼 = 𝐽 → ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) |
| 47 | eqeq12 | ⊢ ( ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ∧ 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) → ( 𝑋 = 𝑌 ↔ ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) | |
| 48 | 47 | ancoms | ⊢ ( ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ∧ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) → ( 𝑋 = 𝑌 ↔ ⦋ 𝐽 / 𝑎 ⦌ 𝐴 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ) ) |
| 49 | 46 48 | syl5ibrcom | ⊢ ( 𝐼 = 𝐽 → ( ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 ∧ 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 ) → 𝑋 = 𝑌 ) ) |
| 50 | 49 | expd | ⊢ ( 𝐼 = 𝐽 → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 → 𝑋 = 𝑌 ) ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝑌 = ⦋ 𝐼 / 𝑎 ⦌ 𝐴 → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 → 𝑋 = 𝑌 ) ) ) |
| 52 | 44 51 | sylbird | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → ( 𝐼 = ( ℩ 𝑎 ∈ 𝑉 𝑌 = 𝐴 ) → ( 𝑋 = ⦋ 𝐽 / 𝑎 ⦌ 𝐴 → 𝑋 = 𝑌 ) ) ) |
| 53 | 9 27 52 | mp2d | ⊢ ( ( 𝜑 ∧ 𝐼 = 𝐽 ) → 𝑋 = 𝑌 ) |