This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uspgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uspgredg2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| uspgredg2v.a | ⊢ 𝐴 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | ||
| Assertion | uspgredg2vlem | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uspgredg2v.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | uspgredg2v.a | ⊢ 𝐴 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | |
| 4 | eleq2 | ⊢ ( 𝑒 = 𝑌 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑌 ) ) | |
| 5 | 4 3 | elrab2 | ⊢ ( 𝑌 ∈ 𝐴 ↔ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) |
| 6 | simpl | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → 𝐺 ∈ USPGraph ) | |
| 7 | 2 | eleq2i | ⊢ ( 𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ( Edg ‘ 𝐺 ) ) |
| 8 | 7 | biimpi | ⊢ ( 𝑌 ∈ 𝐸 → 𝑌 ∈ ( Edg ‘ 𝐺 ) ) |
| 9 | 8 | ad2antrl | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → 𝑌 ∈ ( Edg ‘ 𝐺 ) ) |
| 10 | simprr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → 𝑁 ∈ 𝑌 ) | |
| 11 | 6 9 10 | 3jca | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑌 ) ) |
| 12 | uspgredg2vtxeu | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑌 ) → ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) | |
| 13 | reueq1 | ⊢ ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) ) | |
| 14 | 1 13 | ax-mp | ⊢ ( ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) |
| 15 | 12 14 | sylibr | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑌 ) → ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) |
| 16 | riotacl | ⊢ ( ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) | |
| 17 | 11 15 16 | 3syl | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
| 18 | 5 17 | sylan2b | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |