This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | ||
| upgrres1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | ||
| Assertion | upgrres1 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | |
| 4 | upgrres1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | |
| 5 | f1oi | ⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 | |
| 6 | f1of | ⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
| 8 | 7 | ffdmd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ 𝐹 ) |
| 9 | simpr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) | |
| 10 | 9 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝐸 ) |
| 11 | 2 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 12 | edgupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) ) | |
| 13 | elpwi | ⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ ( Vtx ‘ 𝐺 ) ) | |
| 14 | 13 1 | sseqtrrdi | ⊢ ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝑒 ⊆ 𝑉 ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ 𝑒 ≠ ∅ ∧ ( ♯ ‘ 𝑒 ) ≤ 2 ) → 𝑒 ⊆ 𝑉 ) |
| 16 | 12 15 | syl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ⊆ 𝑉 ) |
| 17 | 11 16 | sylan2b | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ⊆ 𝑉 ) |
| 18 | 17 | ad4ant13 | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ⊆ 𝑉 ) |
| 19 | simpr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑁 ∉ 𝑒 ) | |
| 20 | elpwdifsn | ⊢ ( ( 𝑒 ∈ 𝐸 ∧ 𝑒 ⊆ 𝑉 ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) | |
| 21 | 10 18 19 20 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 22 | simpl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ UPGraph ) | |
| 23 | 11 | biimpi | ⊢ ( 𝑒 ∈ 𝐸 → 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 24 | 12 | simp2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ≠ ∅ ) |
| 25 | 22 23 24 | syl2an | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ≠ ∅ ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ≠ ∅ ) |
| 27 | nelsn | ⊢ ( 𝑒 ≠ ∅ → ¬ 𝑒 ∈ { ∅ } ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → ¬ 𝑒 ∈ { ∅ } ) |
| 29 | 21 28 | eldifd | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑁 ∉ 𝑒 ) → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
| 30 | 29 | ex | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑁 ∉ 𝑒 → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) ) |
| 31 | 30 | ralrimiva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) ) |
| 32 | rabss | ⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ↔ ∀ 𝑒 ∈ 𝐸 ( 𝑁 ∉ 𝑒 → 𝑒 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) ) | |
| 33 | 31 32 | sylibr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } ⊆ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
| 34 | 3 33 | eqsstrid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
| 35 | elrabi | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → 𝑝 ∈ 𝐸 ) | |
| 36 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 37 | 2 36 | eqtri | ⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
| 38 | 37 | eleq2i | ⊢ ( 𝑝 ∈ 𝐸 ↔ 𝑝 ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 39 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 40 | 1 39 | upgrf | ⊢ ( 𝐺 ∈ UPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 41 | 40 | frnd | ⊢ ( 𝐺 ∈ UPGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 42 | 41 | sseld | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑝 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 43 | 38 42 | biimtrid | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑝 ∈ 𝐸 → 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 44 | fveq2 | ⊢ ( 𝑥 = 𝑝 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑝 ) ) | |
| 45 | 44 | breq1d | ⊢ ( 𝑥 = 𝑝 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
| 46 | 45 | elrab | ⊢ ( 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
| 47 | 46 | simprbi | ⊢ ( 𝑝 ∈ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ♯ ‘ 𝑝 ) ≤ 2 ) |
| 48 | 43 47 | syl6 | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑝 ∈ 𝐸 → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑝 ∈ 𝐸 → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
| 50 | 35 49 | syl5com | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
| 51 | 50 3 | eleq2s | ⊢ ( 𝑝 ∈ 𝐹 → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
| 52 | 51 | impcom | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑝 ∈ 𝐹 ) → ( ♯ ‘ 𝑝 ) ≤ 2 ) |
| 53 | 34 52 | ssrabdv | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 54 | 8 53 | fssd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 55 | opex | ⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V | |
| 56 | 4 55 | eqeltri | ⊢ 𝑆 ∈ V |
| 57 | 1 2 3 4 | upgrres1lem2 | ⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 58 | 57 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 59 | 1 2 3 4 | upgrres1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
| 60 | 59 | eqcomi | ⊢ ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
| 61 | 58 60 | isupgr | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 62 | 56 61 | mp1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UPGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 63 | 54 62 | mpbird | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |