This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for upgrres1 . (Contributed by AV, 7-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | ||
| upgrres1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | ||
| Assertion | upgrres1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres1.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | upgrres1.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | |
| 4 | upgrres1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | |
| 5 | 4 | fveq2i | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ) |
| 6 | 1 2 3 | upgrres1lem1 | ⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( I ↾ 𝐹 ) ∈ V ) |
| 7 | opiedgfv | ⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( I ↾ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ) = ( I ↾ 𝐹 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ) = ( I ↾ 𝐹 ) |
| 9 | 5 8 | eqtri | ⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |