This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpwdifsn | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ⊆ 𝑉 ) | |
| 2 | 1 | sselda | ⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑉 ) |
| 3 | df-nel | ⊢ ( 𝐴 ∉ 𝑆 ↔ ¬ 𝐴 ∈ 𝑆 ) | |
| 4 | 3 | biimpi | ⊢ ( 𝐴 ∉ 𝑆 → ¬ 𝐴 ∈ 𝑆 ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → ¬ 𝐴 ∈ 𝑆 ) |
| 6 | 5 | anim1ci | ⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆 ) ) |
| 7 | nelne2 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆 ) → 𝑥 ≠ 𝐴 ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≠ 𝐴 ) |
| 9 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 𝐴 ) ) | |
| 10 | 2 8 9 | sylanbrc | ⊢ ( ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ) |
| 11 | 10 | ex | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ( 𝑉 ∖ { 𝐴 } ) ) ) |
| 12 | 11 | ssrdv | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) |
| 13 | elpwg | ⊢ ( 𝑆 ∈ 𝑊 → ( 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ↔ 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → ( 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ↔ 𝑆 ⊆ ( 𝑉 ∖ { 𝐴 } ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉 ∧ 𝐴 ∉ 𝑆 ) → 𝑆 ∈ 𝒫 ( 𝑉 ∖ { 𝐴 } ) ) |