This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres1.v | |- V = ( Vtx ` G ) |
|
| upgrres1.e | |- E = ( Edg ` G ) |
||
| upgrres1.f | |- F = { e e. E | N e/ e } |
||
| upgrres1.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
||
| Assertion | upgrres1 | |- ( ( G e. UPGraph /\ N e. V ) -> S e. UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres1.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres1.e | |- E = ( Edg ` G ) |
|
| 3 | upgrres1.f | |- F = { e e. E | N e/ e } |
|
| 4 | upgrres1.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
|
| 5 | f1oi | |- ( _I |` F ) : F -1-1-onto-> F |
|
| 6 | f1of | |- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F --> F ) |
|
| 7 | 5 6 | mp1i | |- ( ( G e. UPGraph /\ N e. V ) -> ( _I |` F ) : F --> F ) |
| 8 | 7 | ffdmd | |- ( ( G e. UPGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> F ) |
| 9 | simpr | |- ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) -> e e. E ) |
|
| 10 | 9 | adantr | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. E ) |
| 11 | 2 | eleq2i | |- ( e e. E <-> e e. ( Edg ` G ) ) |
| 12 | edgupgr | |- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) ) |
|
| 13 | elpwi | |- ( e e. ~P ( Vtx ` G ) -> e C_ ( Vtx ` G ) ) |
|
| 14 | 13 1 | sseqtrrdi | |- ( e e. ~P ( Vtx ` G ) -> e C_ V ) |
| 15 | 14 | 3ad2ant1 | |- ( ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) -> e C_ V ) |
| 16 | 12 15 | syl | |- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> e C_ V ) |
| 17 | 11 16 | sylan2b | |- ( ( G e. UPGraph /\ e e. E ) -> e C_ V ) |
| 18 | 17 | ad4ant13 | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e C_ V ) |
| 19 | simpr | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> N e/ e ) |
|
| 20 | elpwdifsn | |- ( ( e e. E /\ e C_ V /\ N e/ e ) -> e e. ~P ( V \ { N } ) ) |
|
| 21 | 10 18 19 20 | syl3anc | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. ~P ( V \ { N } ) ) |
| 22 | simpl | |- ( ( G e. UPGraph /\ N e. V ) -> G e. UPGraph ) |
|
| 23 | 11 | biimpi | |- ( e e. E -> e e. ( Edg ` G ) ) |
| 24 | 12 | simp2d | |- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> e =/= (/) ) |
| 25 | 22 23 24 | syl2an | |- ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) -> e =/= (/) ) |
| 26 | 25 | adantr | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e =/= (/) ) |
| 27 | nelsn | |- ( e =/= (/) -> -. e e. { (/) } ) |
|
| 28 | 26 27 | syl | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> -. e e. { (/) } ) |
| 29 | 21 28 | eldifd | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) |
| 30 | 29 | ex | |- ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) -> ( N e/ e -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) ) |
| 31 | 30 | ralrimiva | |- ( ( G e. UPGraph /\ N e. V ) -> A. e e. E ( N e/ e -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) ) |
| 32 | rabss | |- ( { e e. E | N e/ e } C_ ( ~P ( V \ { N } ) \ { (/) } ) <-> A. e e. E ( N e/ e -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) ) |
|
| 33 | 31 32 | sylibr | |- ( ( G e. UPGraph /\ N e. V ) -> { e e. E | N e/ e } C_ ( ~P ( V \ { N } ) \ { (/) } ) ) |
| 34 | 3 33 | eqsstrid | |- ( ( G e. UPGraph /\ N e. V ) -> F C_ ( ~P ( V \ { N } ) \ { (/) } ) ) |
| 35 | elrabi | |- ( p e. { e e. E | N e/ e } -> p e. E ) |
|
| 36 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 37 | 2 36 | eqtri | |- E = ran ( iEdg ` G ) |
| 38 | 37 | eleq2i | |- ( p e. E <-> p e. ran ( iEdg ` G ) ) |
| 39 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 40 | 1 39 | upgrf | |- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 41 | 40 | frnd | |- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 42 | 41 | sseld | |- ( G e. UPGraph -> ( p e. ran ( iEdg ` G ) -> p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 43 | 38 42 | biimtrid | |- ( G e. UPGraph -> ( p e. E -> p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 44 | fveq2 | |- ( x = p -> ( # ` x ) = ( # ` p ) ) |
|
| 45 | 44 | breq1d | |- ( x = p -> ( ( # ` x ) <_ 2 <-> ( # ` p ) <_ 2 ) ) |
| 46 | 45 | elrab | |- ( p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( p e. ( ~P V \ { (/) } ) /\ ( # ` p ) <_ 2 ) ) |
| 47 | 46 | simprbi | |- ( p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` p ) <_ 2 ) |
| 48 | 43 47 | syl6 | |- ( G e. UPGraph -> ( p e. E -> ( # ` p ) <_ 2 ) ) |
| 49 | 48 | adantr | |- ( ( G e. UPGraph /\ N e. V ) -> ( p e. E -> ( # ` p ) <_ 2 ) ) |
| 50 | 35 49 | syl5com | |- ( p e. { e e. E | N e/ e } -> ( ( G e. UPGraph /\ N e. V ) -> ( # ` p ) <_ 2 ) ) |
| 51 | 50 3 | eleq2s | |- ( p e. F -> ( ( G e. UPGraph /\ N e. V ) -> ( # ` p ) <_ 2 ) ) |
| 52 | 51 | impcom | |- ( ( ( G e. UPGraph /\ N e. V ) /\ p e. F ) -> ( # ` p ) <_ 2 ) |
| 53 | 34 52 | ssrabdv | |- ( ( G e. UPGraph /\ N e. V ) -> F C_ { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 54 | 8 53 | fssd | |- ( ( G e. UPGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 55 | opex | |- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
|
| 56 | 4 55 | eqeltri | |- S e. _V |
| 57 | 1 2 3 4 | upgrres1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| 58 | 57 | eqcomi | |- ( V \ { N } ) = ( Vtx ` S ) |
| 59 | 1 2 3 4 | upgrres1lem3 | |- ( iEdg ` S ) = ( _I |` F ) |
| 60 | 59 | eqcomi | |- ( _I |` F ) = ( iEdg ` S ) |
| 61 | 58 60 | isupgr | |- ( S e. _V -> ( S e. UPGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 62 | 56 61 | mp1i | |- ( ( G e. UPGraph /\ N e. V ) -> ( S e. UPGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 63 | 54 62 | mpbird | |- ( ( G e. UPGraph /\ N e. V ) -> S e. UPGraph ) |