This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for upgrimwlk . (Contributed by AV, 28-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimwlk.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimwlklem5 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimwlk.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 8 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 | 1 2 3 4 5 6 9 | upgrimwlklem1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 11 | 10 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 13 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 15 | 1 | upgrwlkedg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 16 | 14 7 15 | syl2anc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 17 | 2fveq3 | ⊢ ( 𝑥 = 𝑖 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑖 ) ) | |
| 19 | fvoveq1 | ⊢ ( 𝑥 = 𝑖 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) | |
| 20 | 18 19 | preq12d | ⊢ ( 𝑥 = 𝑖 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 21 | 17 20 | eqeq12d | ⊢ ( 𝑥 = 𝑖 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 22 | 21 | rspcv | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 24 | imaeq2 | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) | |
| 25 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 26 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 27 | 25 26 | grimf1o | ⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 28 | f1ofn | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑁 Fn ( Vtx ‘ 𝐺 ) ) | |
| 29 | 5 27 28 | 3syl | ⊢ ( 𝜑 → 𝑁 Fn ( Vtx ‘ 𝐺 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 Fn ( Vtx ‘ 𝐺 ) ) |
| 31 | 25 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 32 | 7 31 | syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 34 | elfzofz | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 36 | 33 35 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 37 | fzofzp1 | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 39 | 33 38 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 40 | fnimapr | ⊢ ( ( 𝑁 Fn ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) = { ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) , ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) } ) | |
| 41 | 30 36 39 40 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) = { ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) , ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 42 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 43 | 42 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 44 | 43 35 | fvco3d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) = ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) ) |
| 45 | 33 38 | fvco3d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) = ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
| 46 | 44 45 | preq12d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } = { ( 𝑁 ‘ ( 𝑃 ‘ 𝑖 ) ) , ( 𝑁 ‘ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 47 | 41 46 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 “ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 48 | 24 47 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 49 | 48 | ex | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 50 | 23 49 | syld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 51 | 50 | ex | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 52 | 16 51 | mpid | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 53 | 12 52 | sylbid | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) |
| 54 | 53 | imp | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |