This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map walks onto walks. (Contributed by AV, 28-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimwlk.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimwlk | ⊢ ( 𝜑 → 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimwlk.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 8 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 | 1 2 3 4 5 6 9 | upgrimwlklem2 | ⊢ ( 𝜑 → 𝐸 ∈ Word dom 𝐽 ) |
| 11 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 12 | 11 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 14 | 1 2 3 4 5 6 9 13 | upgrimwlklem4 | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) |
| 15 | 1 2 3 4 5 6 9 | upgrimwlklem3 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 16 | 1 2 3 4 5 6 7 | upgrimwlklem5 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 17 | 15 16 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) |
| 19 | uspgrupgr | ⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UPGraph ) | |
| 20 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 21 | 20 2 | upgriswlk | ⊢ ( 𝐻 ∈ UPGraph → ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ∈ Word dom 𝐽 ∧ ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 22 | 4 19 21 | 3syl | ⊢ ( 𝜑 → ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ∈ Word dom 𝐽 ∧ ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ( 𝐽 ‘ ( 𝐸 ‘ 𝑖 ) ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑖 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 23 | 10 14 18 22 | mpbir3and | ⊢ ( 𝜑 → 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |