This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for upgrimwlk . (Contributed by AV, 28-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimwlk.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| Assertion | upgrimwlklem5 | |- ( ( ph /\ i e. ( 0 ..^ ( # ` E ) ) ) -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimwlk.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 8 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 9 | 7 8 | syl | |- ( ph -> F e. Word dom I ) |
| 10 | 1 2 3 4 5 6 9 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 11 | 10 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 12 | 11 | eleq2d | |- ( ph -> ( i e. ( 0 ..^ ( # ` E ) ) <-> i e. ( 0 ..^ ( # ` F ) ) ) ) |
| 13 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 14 | 3 13 | syl | |- ( ph -> G e. UPGraph ) |
| 15 | 1 | upgrwlkedg | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. x e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) |
| 16 | 14 7 15 | syl2anc | |- ( ph -> A. x e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) |
| 17 | 2fveq3 | |- ( x = i -> ( I ` ( F ` x ) ) = ( I ` ( F ` i ) ) ) |
|
| 18 | fveq2 | |- ( x = i -> ( P ` x ) = ( P ` i ) ) |
|
| 19 | fvoveq1 | |- ( x = i -> ( P ` ( x + 1 ) ) = ( P ` ( i + 1 ) ) ) |
|
| 20 | 18 19 | preq12d | |- ( x = i -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 21 | 17 20 | eqeq12d | |- ( x = i -> ( ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } <-> ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 22 | 21 | rspcv | |- ( i e. ( 0 ..^ ( # ` F ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } -> ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 23 | 22 | adantl | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } -> ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 24 | imaeq2 | |- ( ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( N " ( I ` ( F ` i ) ) ) = ( N " { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
|
| 25 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 26 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 27 | 25 26 | grimf1o | |- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 28 | f1ofn | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> N Fn ( Vtx ` G ) ) |
|
| 29 | 5 27 28 | 3syl | |- ( ph -> N Fn ( Vtx ` G ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> N Fn ( Vtx ` G ) ) |
| 31 | 25 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 32 | 7 31 | syl | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 34 | elfzofz | |- ( i e. ( 0 ..^ ( # ` F ) ) -> i e. ( 0 ... ( # ` F ) ) ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> i e. ( 0 ... ( # ` F ) ) ) |
| 36 | 33 35 | ffvelcdmd | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` i ) e. ( Vtx ` G ) ) |
| 37 | fzofzp1 | |- ( i e. ( 0 ..^ ( # ` F ) ) -> ( i + 1 ) e. ( 0 ... ( # ` F ) ) ) |
|
| 38 | 37 | adantl | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( i + 1 ) e. ( 0 ... ( # ` F ) ) ) |
| 39 | 33 38 | ffvelcdmd | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` ( i + 1 ) ) e. ( Vtx ` G ) ) |
| 40 | fnimapr | |- ( ( N Fn ( Vtx ` G ) /\ ( P ` i ) e. ( Vtx ` G ) /\ ( P ` ( i + 1 ) ) e. ( Vtx ` G ) ) -> ( N " { ( P ` i ) , ( P ` ( i + 1 ) ) } ) = { ( N ` ( P ` i ) ) , ( N ` ( P ` ( i + 1 ) ) ) } ) |
|
| 41 | 30 36 39 40 | syl3anc | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( N " { ( P ` i ) , ( P ` ( i + 1 ) ) } ) = { ( N ` ( P ` i ) ) , ( N ` ( P ` ( i + 1 ) ) ) } ) |
| 42 | 7 | adantr | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> F ( Walks ` G ) P ) |
| 43 | 42 31 | syl | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 44 | 43 35 | fvco3d | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` i ) = ( N ` ( P ` i ) ) ) |
| 45 | 33 38 | fvco3d | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` ( i + 1 ) ) = ( N ` ( P ` ( i + 1 ) ) ) ) |
| 46 | 44 45 | preq12d | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } = { ( N ` ( P ` i ) ) , ( N ` ( P ` ( i + 1 ) ) ) } ) |
| 47 | 41 46 | eqtr4d | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( N " { ( P ` i ) , ( P ` ( i + 1 ) ) } ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |
| 48 | 24 47 | sylan9eqr | |- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |
| 49 | 48 | ex | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) |
| 50 | 23 49 | syld | |- ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) |
| 51 | 50 | ex | |- ( ph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` x ) ) = { ( P ` x ) , ( P ` ( x + 1 ) ) } -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) ) |
| 52 | 16 51 | mpid | |- ( ph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) |
| 53 | 12 52 | sylbid | |- ( ph -> ( i e. ( 0 ..^ ( # ` E ) ) -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) ) |
| 54 | 53 | imp | |- ( ( ph /\ i e. ( 0 ..^ ( # ` E ) ) ) -> ( N " ( I ` ( F ` i ) ) ) = { ( ( N o. P ) ` i ) , ( ( N o. P ) ` ( i + 1 ) ) } ) |