This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for upgrimwlk . (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimwlk.f | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) | ||
| Assertion | upgrimwlklem3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑋 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimwlk.f | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) | |
| 8 | 6 | a1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 9 | 2fveq3 | ⊢ ( 𝑥 = 𝑋 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) | |
| 10 | 9 | imaeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ 𝑥 = 𝑋 ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 13 | 1 2 3 4 5 6 7 | upgrimwlklem1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 15 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 16 | fdm | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 17 | 16 | eqcomd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 18 | 15 17 | syl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 20 | 14 19 | eqtrd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = dom 𝐹 ) |
| 21 | 20 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝑋 ∈ dom 𝐹 ) ) |
| 22 | 21 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝑋 ∈ dom 𝐹 ) |
| 23 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ∈ V ) | |
| 24 | 8 12 22 23 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐸 ‘ 𝑋 ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑋 ) ) = ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) |
| 26 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝐻 ∈ USPGraph ) |
| 27 | 2 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 29 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 30 | 3 29 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 31 | uspgruhgr | ⊢ ( 𝐻 ∈ USPGraph → 𝐻 ∈ UHGraph ) | |
| 32 | 4 31 | syl | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) |
| 33 | 30 32 | jca | ⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ) |
| 35 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
| 36 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 37 | 30 36 | syl | ⊢ ( 𝜑 → Fun 𝐼 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → Fun 𝐼 ) |
| 39 | 13 7 | wrdfd | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐼 ) |
| 40 | 39 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) |
| 41 | 1 | iedgedg | ⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 42 | 38 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) |
| 43 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 44 | eqid | ⊢ ( Edg ‘ 𝐻 ) = ( Edg ‘ 𝐻 ) | |
| 45 | 43 44 | uhgrimedgi | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 46 | 34 35 42 45 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 47 | f1ocnvfv2 | ⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) | |
| 48 | 28 46 47 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 49 | 25 48 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) → ( 𝐽 ‘ ( 𝐸 ‘ 𝑋 ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |