This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrimedgi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| uhgrimedgi.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | ||
| Assertion | uhgrimedgi | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimedgi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | uhgrimedgi.d | ⊢ 𝐷 = ( Edg ‘ 𝐻 ) | |
| 3 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 7 | 3 4 5 6 | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 8 | 1 | eleq2i | ⊢ ( 𝐾 ∈ 𝐸 ↔ 𝐾 ∈ ( Edg ‘ 𝐺 ) ) |
| 9 | 5 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 10 | 5 | edgiedgb | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐾 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 12 | 8 11 | bitrid | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐾 ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 14 | simplr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 15 | 2fveq3 | ⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 17 | 16 | imaeq2d | ⊢ ( 𝑖 = 𝑘 → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑖 = 𝑘 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 19 | 18 | rspcv | ⊢ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 20 | 14 19 | syl | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 21 | 6 | uhgrfun | ⊢ ( 𝐻 ∈ UHGraph → Fun ( iEdg ‘ 𝐻 ) ) |
| 22 | 21 | ad3antlr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → Fun ( iEdg ‘ 𝐻 ) ) |
| 23 | f1of | ⊢ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑗 : dom ( iEdg ‘ 𝐺 ) ⟶ dom ( iEdg ‘ 𝐻 ) ) |
| 25 | 14 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 26 | 24 25 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) |
| 27 | 6 | iedgedg | ⊢ ( ( Fun ( iEdg ‘ 𝐻 ) ∧ ( 𝑗 ‘ 𝑘 ) ∈ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 28 | 22 26 27 | syl2an2r | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 29 | 28 2 | eleqtrrdi | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ) |
| 30 | eleq1 | ⊢ ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ) ) | |
| 31 | 30 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 32 | 29 31 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ∧ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 33 | 32 | ex | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑘 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
| 34 | 20 33 | syl5d | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
| 35 | 34 | impd | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 36 | 35 | ex | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) ) |
| 38 | 37 | 3imp | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) |
| 39 | imaeq2 | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 “ 𝐾 ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐹 “ 𝐾 ) ∈ 𝐷 ↔ ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∈ 𝐷 ) ) |
| 43 | 38 42 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |
| 44 | 43 | 3exp | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) ∧ 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) ) |
| 45 | 44 | ex | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) ) ) |
| 46 | 45 | rexlimdva | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) ) ) |
| 47 | 13 46 | sylbid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐾 ∈ 𝐸 → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) ) ) |
| 48 | 47 | imp | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) ) |
| 49 | 48 | imp | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐾 ∈ 𝐸 ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 50 | 49 | exlimdv | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐾 ∈ 𝐸 ) ∧ 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 51 | 50 | expimpd | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐾 ∈ 𝐸 ) → ( ( 𝐹 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 52 | 7 51 | syl5 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 53 | 52 | ex | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐾 ∈ 𝐸 → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) ) |
| 54 | 53 | impcomd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) ) |
| 55 | 54 | imp | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝐾 ∈ 𝐸 ) ) → ( 𝐹 “ 𝐾 ) ∈ 𝐷 ) |