This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for upgrimwlk . (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
||
| Assertion | upgrimwlklem3 | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( J ` ( E ` X ) ) = ( N " ( I ` ( F ` X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
|
| 8 | 6 | a1i | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) ) |
| 9 | 2fveq3 | |- ( x = X -> ( I ` ( F ` x ) ) = ( I ` ( F ` X ) ) ) |
|
| 10 | 9 | imaeq2d | |- ( x = X -> ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` X ) ) ) ) |
| 11 | 10 | fveq2d | |- ( x = X -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) ) |
| 12 | 11 | adantl | |- ( ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) /\ x = X ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) ) |
| 13 | 1 2 3 4 5 6 7 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 14 | 13 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 15 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 16 | fdm | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 17 | 16 | eqcomd | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 18 | 15 17 | syl | |- ( F e. Word dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 19 | 7 18 | syl | |- ( ph -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 20 | 14 19 | eqtrd | |- ( ph -> ( 0 ..^ ( # ` E ) ) = dom F ) |
| 21 | 20 | eleq2d | |- ( ph -> ( X e. ( 0 ..^ ( # ` E ) ) <-> X e. dom F ) ) |
| 22 | 21 | biimpa | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> X e. dom F ) |
| 23 | fvexd | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) e. _V ) |
|
| 24 | 8 12 22 23 | fvmptd | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( E ` X ) = ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) ) |
| 25 | 24 | fveq2d | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( J ` ( E ` X ) ) = ( J ` ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) ) ) |
| 26 | 4 | adantr | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> H e. USPGraph ) |
| 27 | 2 | uspgrf1oedg | |- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 28 | 26 27 | syl | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 29 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 30 | 3 29 | syl | |- ( ph -> G e. UHGraph ) |
| 31 | uspgruhgr | |- ( H e. USPGraph -> H e. UHGraph ) |
|
| 32 | 4 31 | syl | |- ( ph -> H e. UHGraph ) |
| 33 | 30 32 | jca | |- ( ph -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( G e. UHGraph /\ H e. UHGraph ) ) |
| 35 | 5 | adantr | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> N e. ( G GraphIso H ) ) |
| 36 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 37 | 30 36 | syl | |- ( ph -> Fun I ) |
| 38 | 37 | adantr | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> Fun I ) |
| 39 | 13 7 | wrdfd | |- ( ph -> F : ( 0 ..^ ( # ` E ) ) --> dom I ) |
| 40 | 39 | ffvelcdmda | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( F ` X ) e. dom I ) |
| 41 | 1 | iedgedg | |- ( ( Fun I /\ ( F ` X ) e. dom I ) -> ( I ` ( F ` X ) ) e. ( Edg ` G ) ) |
| 42 | 38 40 41 | syl2anc | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( I ` ( F ` X ) ) e. ( Edg ` G ) ) |
| 43 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 44 | eqid | |- ( Edg ` H ) = ( Edg ` H ) |
|
| 45 | 43 44 | uhgrimedgi | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( N e. ( G GraphIso H ) /\ ( I ` ( F ` X ) ) e. ( Edg ` G ) ) ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) ) |
| 46 | 34 35 42 45 | syl12anc | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) ) |
| 47 | f1ocnvfv2 | |- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( N " ( I ` ( F ` X ) ) ) e. ( Edg ` H ) ) -> ( J ` ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) ) = ( N " ( I ` ( F ` X ) ) ) ) |
|
| 48 | 28 46 47 | syl2anc | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( J ` ( `' J ` ( N " ( I ` ( F ` X ) ) ) ) ) = ( N " ( I ` ( F ` X ) ) ) ) |
| 49 | 25 48 | eqtrd | |- ( ( ph /\ X e. ( 0 ..^ ( # ` E ) ) ) -> ( J ` ( E ` X ) ) = ( N " ( I ` ( F ` X ) ) ) ) |