This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrimtrls . (Contributed by AV, 29-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimtrls.t | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimtrlslem2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimtrls.t | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 8 | 2 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 9 | f1of1 | ⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) | |
| 10 | 4 8 9 | 3syl | ⊢ ( 𝜑 → 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ) |
| 11 | 1 2 3 4 5 6 7 | upgrimtrlslem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 12 | edgval | ⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) | |
| 13 | 2 | eqcomi | ⊢ ( iEdg ‘ 𝐻 ) = 𝐽 |
| 14 | 13 | rneqi | ⊢ ran ( iEdg ‘ 𝐻 ) = ran 𝐽 |
| 15 | 12 14 | eqtri | ⊢ ( Edg ‘ 𝐻 ) = ran 𝐽 |
| 16 | 11 15 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ran 𝐽 ) |
| 17 | 1 2 3 4 5 6 7 | upgrimtrlslem1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 18 | 17 15 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ran 𝐽 ) |
| 19 | 16 18 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ran 𝐽 ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ran 𝐽 ) ) |
| 20 | f1ocnvfvrneq | ⊢ ( ( 𝐽 : dom 𝐽 –1-1→ ( Edg ‘ 𝐻 ) ∧ ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ran 𝐽 ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ ran 𝐽 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 21 | 10 19 20 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 22 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 23 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 24 | 22 23 | grimf1o | ⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 25 | f1of1 | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) | |
| 26 | 5 24 25 | 3syl | ⊢ ( 𝜑 → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 27 | uspgruhgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UHGraph ) | |
| 28 | 3 27 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
| 29 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 30 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 31 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 32 | id | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 33 | 32 | ffdmd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 34 | 30 31 33 | 3syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 35 | 7 29 34 | 3syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ dom 𝐼 ) |
| 36 | 35 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) |
| 37 | 22 1 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐹 ‘ 𝑥 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 38 | 28 36 37 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 39 | 35 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ dom 𝐼 ) |
| 40 | 22 1 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐹 ‘ 𝑦 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 41 | 28 39 40 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 42 | 38 41 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 43 | f1imaeq | ⊢ ( ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 44 | 26 42 43 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 45 | 1 | uspgrf1oedg | ⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
| 46 | f1of1 | ⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) | |
| 47 | 3 45 46 | 3syl | ⊢ ( 𝜑 → 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ) |
| 48 | 1 | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 49 | f1f | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 50 | fdm | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 51 | 50 | eqcomd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 52 | 49 51 | syl | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 ) |
| 53 | f1eq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ) | |
| 54 | 53 | biimpcd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = dom 𝐹 → 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ) |
| 55 | 52 54 | mpd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) |
| 56 | 7 48 55 | 3syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) |
| 57 | 47 56 | jca | ⊢ ( 𝜑 → ( 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ∧ 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ) |
| 58 | f1cofveqaeq | ⊢ ( ( ( 𝐼 : dom 𝐼 –1-1→ ( Edg ‘ 𝐺 ) ∧ 𝐹 : dom 𝐹 –1-1→ dom 𝐼 ) ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) | |
| 59 | 57 58 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 60 | 44 59 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 61 | 21 60 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |