This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrimtrls . (Contributed by AV, 29-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimtrls.t | |- ( ph -> F ( Trails ` G ) P ) |
||
| Assertion | upgrimtrlslem2 | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimtrls.t | |- ( ph -> F ( Trails ` G ) P ) |
|
| 8 | 2 | uspgrf1oedg | |- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 9 | f1of1 | |- ( J : dom J -1-1-onto-> ( Edg ` H ) -> J : dom J -1-1-> ( Edg ` H ) ) |
|
| 10 | 4 8 9 | 3syl | |- ( ph -> J : dom J -1-1-> ( Edg ` H ) ) |
| 11 | 1 2 3 4 5 6 7 | upgrimtrlslem1 | |- ( ( ph /\ x e. dom F ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 12 | edgval | |- ( Edg ` H ) = ran ( iEdg ` H ) |
|
| 13 | 2 | eqcomi | |- ( iEdg ` H ) = J |
| 14 | 13 | rneqi | |- ran ( iEdg ` H ) = ran J |
| 15 | 12 14 | eqtri | |- ( Edg ` H ) = ran J |
| 16 | 11 15 | eleqtrdi | |- ( ( ph /\ x e. dom F ) -> ( N " ( I ` ( F ` x ) ) ) e. ran J ) |
| 17 | 1 2 3 4 5 6 7 | upgrimtrlslem1 | |- ( ( ph /\ y e. dom F ) -> ( N " ( I ` ( F ` y ) ) ) e. ( Edg ` H ) ) |
| 18 | 17 15 | eleqtrdi | |- ( ( ph /\ y e. dom F ) -> ( N " ( I ` ( F ` y ) ) ) e. ran J ) |
| 19 | 16 18 | anim12dan | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( N " ( I ` ( F ` x ) ) ) e. ran J /\ ( N " ( I ` ( F ` y ) ) ) e. ran J ) ) |
| 20 | f1ocnvfvrneq | |- ( ( J : dom J -1-1-> ( Edg ` H ) /\ ( ( N " ( I ` ( F ` x ) ) ) e. ran J /\ ( N " ( I ` ( F ` y ) ) ) e. ran J ) ) -> ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) ) ) |
|
| 21 | 10 19 20 | syl2an2r | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) ) ) |
| 22 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 23 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 24 | 22 23 | grimf1o | |- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 25 | f1of1 | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
|
| 26 | 5 24 25 | 3syl | |- ( ph -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 27 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 28 | 3 27 | syl | |- ( ph -> G e. UHGraph ) |
| 29 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 30 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 31 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 32 | id | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 33 | 32 | ffdmd | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> F : dom F --> dom I ) |
| 34 | 30 31 33 | 3syl | |- ( F ( Walks ` G ) P -> F : dom F --> dom I ) |
| 35 | 7 29 34 | 3syl | |- ( ph -> F : dom F --> dom I ) |
| 36 | 35 | ffvelcdmda | |- ( ( ph /\ x e. dom F ) -> ( F ` x ) e. dom I ) |
| 37 | 22 1 | uhgrss | |- ( ( G e. UHGraph /\ ( F ` x ) e. dom I ) -> ( I ` ( F ` x ) ) C_ ( Vtx ` G ) ) |
| 38 | 28 36 37 | syl2an2r | |- ( ( ph /\ x e. dom F ) -> ( I ` ( F ` x ) ) C_ ( Vtx ` G ) ) |
| 39 | 35 | ffvelcdmda | |- ( ( ph /\ y e. dom F ) -> ( F ` y ) e. dom I ) |
| 40 | 22 1 | uhgrss | |- ( ( G e. UHGraph /\ ( F ` y ) e. dom I ) -> ( I ` ( F ` y ) ) C_ ( Vtx ` G ) ) |
| 41 | 28 39 40 | syl2an2r | |- ( ( ph /\ y e. dom F ) -> ( I ` ( F ` y ) ) C_ ( Vtx ` G ) ) |
| 42 | 38 41 | anim12dan | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( I ` ( F ` x ) ) C_ ( Vtx ` G ) /\ ( I ` ( F ` y ) ) C_ ( Vtx ` G ) ) ) |
| 43 | f1imaeq | |- ( ( N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( I ` ( F ` x ) ) C_ ( Vtx ` G ) /\ ( I ` ( F ` y ) ) C_ ( Vtx ` G ) ) ) -> ( ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) <-> ( I ` ( F ` x ) ) = ( I ` ( F ` y ) ) ) ) |
|
| 44 | 26 42 43 | syl2an2r | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) <-> ( I ` ( F ` x ) ) = ( I ` ( F ` y ) ) ) ) |
| 45 | 1 | uspgrf1oedg | |- ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 46 | f1of1 | |- ( I : dom I -1-1-onto-> ( Edg ` G ) -> I : dom I -1-1-> ( Edg ` G ) ) |
|
| 47 | 3 45 46 | 3syl | |- ( ph -> I : dom I -1-1-> ( Edg ` G ) ) |
| 48 | 1 | trlf1 | |- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 49 | f1f | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 50 | fdm | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 51 | 50 | eqcomd | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 52 | 49 51 | syl | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( 0 ..^ ( # ` F ) ) = dom F ) |
| 53 | f1eq2 | |- ( ( 0 ..^ ( # ` F ) ) = dom F -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : dom F -1-1-> dom I ) ) |
|
| 54 | 53 | biimpcd | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( ( 0 ..^ ( # ` F ) ) = dom F -> F : dom F -1-1-> dom I ) ) |
| 55 | 52 54 | mpd | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> F : dom F -1-1-> dom I ) |
| 56 | 7 48 55 | 3syl | |- ( ph -> F : dom F -1-1-> dom I ) |
| 57 | 47 56 | jca | |- ( ph -> ( I : dom I -1-1-> ( Edg ` G ) /\ F : dom F -1-1-> dom I ) ) |
| 58 | f1cofveqaeq | |- ( ( ( I : dom I -1-1-> ( Edg ` G ) /\ F : dom F -1-1-> dom I ) /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( I ` ( F ` x ) ) = ( I ` ( F ` y ) ) -> x = y ) ) |
|
| 59 | 57 58 | sylan | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( I ` ( F ` x ) ) = ( I ` ( F ` y ) ) -> x = y ) ) |
| 60 | 44 59 | sylbid | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) -> x = y ) ) |
| 61 | 21 60 | syld | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) |