This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upciclem4 . (Contributed by Zhi Wang, 17-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | ||
| upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
| upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | ||
| upciclem3.od | ⊢ · = ( comp ‘ 𝐷 ) | ||
| upciclem3.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| upciclem3.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑋 ) ) | ||
| upciclem3.mn | ⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) | ||
| upciclem3.nm | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | ||
| Assertion | upciclem3 | ⊢ ( 𝜑 → ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 7 | upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | |
| 10 | upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 11 | upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | |
| 12 | upciclem3.od | ⊢ · = ( comp ‘ 𝐷 ) | |
| 13 | upciclem3.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 14 | upciclem3.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 15 | upciclem3.mn | ⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) | |
| 16 | upciclem3.nm | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑝 = ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑝 = ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) → ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑝 = ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) → ( 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ↔ 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
| 22 | 21 | eqeq2d | ⊢ ( 𝑝 = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) → ( 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ↔ 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) ) |
| 23 | 11 7 10 | upciclem1 | ⊢ ( 𝜑 → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
| 24 | 6 | funcrcl2 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 25 | 1 3 12 24 7 8 7 13 14 | catcocl | ⊢ ( 𝜑 → ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 26 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 27 | 1 3 26 24 7 | catidcl | ⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 28 | 1 2 3 4 5 6 7 8 7 9 10 12 13 14 16 | upciclem2 | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝐿 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
| 29 | 15 28 | eqtr4d | ⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
| 30 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 31 | 1 26 30 6 7 | funcid | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 | 31 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
| 33 | 6 | funcrcl3 | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 34 | 1 2 6 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 35 | 34 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
| 36 | 2 4 30 33 9 5 35 10 | catlid | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) = 𝑀 ) |
| 37 | 32 36 | eqtr2d | ⊢ ( 𝜑 → 𝑀 = ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑀 ) ) |
| 38 | 19 22 23 25 27 29 37 | reu2eqd | ⊢ ( 𝜑 → ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐾 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |