This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upcic , upeu , and upeu2 . (Contributed by Zhi Wang, 16-Sep-2025) (Proof shortened by Zhi Wang, 5-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upciclem1.1 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) | |
| upciclem1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upciclem1.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | ||
| Assertion | upciclem1 | ⊢ ( 𝜑 → ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upciclem1.1 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) | |
| 2 | upciclem1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | upciclem1.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 4 | eqeq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) | |
| 5 | 4 | reubidv | ⊢ ( 𝑛 = 𝑁 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | 6 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) = ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) | |
| 11 | 10 | fveq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ) |
| 12 | eqidd | ⊢ ( 𝑦 = 𝑌 → 𝑀 = 𝑀 ) | |
| 13 | 9 11 12 | oveq123d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 14 | 13 | eqeq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 15 | 8 14 | reueqbidv | ⊢ ( 𝑦 = 𝑌 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 16 | 7 15 | raleqbidv | ⊢ ( 𝑦 = 𝑌 → ( ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ↔ ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 17 | 16 1 2 | rspcdva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑛 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 18 | 5 17 3 | rspcdva | ⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 19 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 21 | 20 | eqeq2d | ⊢ ( 𝑘 = 𝑚 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 22 | 21 | cbvreuvw | ⊢ ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 23 | fveq2 | ⊢ ( 𝑚 = 𝑙 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑚 = 𝑙 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 25 | 24 | eqeq2d | ⊢ ( 𝑚 = 𝑙 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 26 | 25 | cbvreuvw | ⊢ ( ∃! 𝑚 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑚 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 27 | 22 26 | bitri | ⊢ ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 28 | 18 27 | sylib | ⊢ ( 𝜑 → ∃! 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |