This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upciclem4 . (Contributed by Zhi Wang, 17-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | |- B = ( Base ` D ) |
|
| upcic.c | |- C = ( Base ` E ) |
||
| upcic.h | |- H = ( Hom ` D ) |
||
| upcic.j | |- J = ( Hom ` E ) |
||
| upcic.o | |- O = ( comp ` E ) |
||
| upcic.f | |- ( ph -> F ( D Func E ) G ) |
||
| upcic.x | |- ( ph -> X e. B ) |
||
| upcic.y | |- ( ph -> Y e. B ) |
||
| upcic.z | |- ( ph -> Z e. C ) |
||
| upcic.m | |- ( ph -> M e. ( Z J ( F ` X ) ) ) |
||
| upcic.1 | |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
||
| upciclem3.od | |- .x. = ( comp ` D ) |
||
| upciclem3.k | |- ( ph -> K e. ( X H Y ) ) |
||
| upciclem3.l | |- ( ph -> L e. ( Y H X ) ) |
||
| upciclem3.mn | |- ( ph -> M = ( ( ( Y G X ) ` L ) ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) |
||
| upciclem3.nm | |- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
||
| Assertion | upciclem3 | |- ( ph -> ( L ( <. X , Y >. .x. X ) K ) = ( ( Id ` D ) ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | |- B = ( Base ` D ) |
|
| 2 | upcic.c | |- C = ( Base ` E ) |
|
| 3 | upcic.h | |- H = ( Hom ` D ) |
|
| 4 | upcic.j | |- J = ( Hom ` E ) |
|
| 5 | upcic.o | |- O = ( comp ` E ) |
|
| 6 | upcic.f | |- ( ph -> F ( D Func E ) G ) |
|
| 7 | upcic.x | |- ( ph -> X e. B ) |
|
| 8 | upcic.y | |- ( ph -> Y e. B ) |
|
| 9 | upcic.z | |- ( ph -> Z e. C ) |
|
| 10 | upcic.m | |- ( ph -> M e. ( Z J ( F ` X ) ) ) |
|
| 11 | upcic.1 | |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
|
| 12 | upciclem3.od | |- .x. = ( comp ` D ) |
|
| 13 | upciclem3.k | |- ( ph -> K e. ( X H Y ) ) |
|
| 14 | upciclem3.l | |- ( ph -> L e. ( Y H X ) ) |
|
| 15 | upciclem3.mn | |- ( ph -> M = ( ( ( Y G X ) ` L ) ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) |
|
| 16 | upciclem3.nm | |- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
|
| 17 | fveq2 | |- ( p = ( L ( <. X , Y >. .x. X ) K ) -> ( ( X G X ) ` p ) = ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ) |
|
| 18 | 17 | oveq1d | |- ( p = ( L ( <. X , Y >. .x. X ) K ) -> ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
| 19 | 18 | eqeq2d | |- ( p = ( L ( <. X , Y >. .x. X ) K ) -> ( M = ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) <-> M = ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) ) |
| 20 | fveq2 | |- ( p = ( ( Id ` D ) ` X ) -> ( ( X G X ) ` p ) = ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ) |
|
| 21 | 20 | oveq1d | |- ( p = ( ( Id ` D ) ` X ) -> ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
| 22 | 21 | eqeq2d | |- ( p = ( ( Id ` D ) ` X ) -> ( M = ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) <-> M = ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) ) |
| 23 | 11 7 10 | upciclem1 | |- ( ph -> E! p e. ( X H X ) M = ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
| 24 | 6 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 25 | 1 3 12 24 7 8 7 13 14 | catcocl | |- ( ph -> ( L ( <. X , Y >. .x. X ) K ) e. ( X H X ) ) |
| 26 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 27 | 1 3 26 24 7 | catidcl | |- ( ph -> ( ( Id ` D ) ` X ) e. ( X H X ) ) |
| 28 | 1 2 3 4 5 6 7 8 7 9 10 12 13 14 16 | upciclem2 | |- ( ph -> ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( Y G X ) ` L ) ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) |
| 29 | 15 28 | eqtr4d | |- ( ph -> M = ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
| 30 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 31 | 1 26 30 6 7 | funcid | |- ( ph -> ( ( X G X ) ` ( ( Id ` D ) ` X ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
| 32 | 31 | oveq1d | |- ( ph -> ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( Id ` E ) ` ( F ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
| 33 | 6 | funcrcl3 | |- ( ph -> E e. Cat ) |
| 34 | 1 2 6 | funcf1 | |- ( ph -> F : B --> C ) |
| 35 | 34 7 | ffvelcdmd | |- ( ph -> ( F ` X ) e. C ) |
| 36 | 2 4 30 33 9 5 35 10 | catlid | |- ( ph -> ( ( ( Id ` E ) ` ( F ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = M ) |
| 37 | 32 36 | eqtr2d | |- ( ph -> M = ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
| 38 | 19 22 23 25 27 29 37 | reu2eqd | |- ( ph -> ( L ( <. X , Y >. .x. X ) K ) = ( ( Id ` D ) ` X ) ) |