This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upcic and upeu . (Contributed by Zhi Wang, 19-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | ||
| upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
| upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | ||
| upcic.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | ||
| upcic.2 | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) | ||
| Assertion | upciclem4 | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 7 | upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | upcic.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐶 ) | |
| 10 | upcic.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 11 | upcic.1 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) | |
| 12 | upcic.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 13 | upcic.2 | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) | |
| 14 | 11 8 12 | upciclem1 | ⊢ ( 𝜑 → ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 15 | reurex | ⊢ ( ∃! 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) → ∃ 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 17 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝜑 ) | |
| 18 | 13 7 10 | upciclem1 | ⊢ ( 𝜑 → ∃! 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
| 19 | reurex | ⊢ ( ∃! 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) → ∃ 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → ∃ 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) |
| 21 | eqid | ⊢ ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 ) | |
| 22 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 23 | 22 | funcrcl2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝐷 ∈ Cat ) |
| 24 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 25 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 26 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 27 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 28 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 29 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 30 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑍 ∈ 𝐶 ) |
| 31 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑀 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑤 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑤 ) ‘ 𝑘 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑤 ) ) 𝑀 ) ) |
| 33 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) | |
| 34 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 35 | 1 2 3 4 5 22 24 25 30 31 32 26 28 29 33 34 | upciclem3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ( 𝑞 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑝 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |
| 36 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑁 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 37 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ∀ 𝑣 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑍 𝐽 ( 𝐹 ‘ 𝑣 ) ) ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑣 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑣 ) ‘ 𝑙 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑣 ) ) 𝑁 ) ) |
| 38 | 1 2 3 4 5 22 25 24 30 36 37 26 29 28 34 33 | upciclem3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → ( 𝑝 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐷 ) 𝑌 ) 𝑞 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑌 ) ) |
| 39 | 1 3 26 21 27 23 24 25 28 29 35 38 | isisod | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
| 40 | 21 1 23 24 25 39 | brcici | ⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) ∧ ( 𝑞 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑀 = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑞 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑋 ) ) 𝑁 ) ) ) → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
| 41 | 20 40 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
| 42 | 16 41 | rexlimddv | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ) |
| 43 | 20 39 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
| 44 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 45 | 16 43 44 | reximssdv | ⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 46 | fveq2 | ⊢ ( 𝑝 = 𝑟 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ) | |
| 47 | 46 | oveq1d | ⊢ ( 𝑝 = 𝑟 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 48 | 47 | eqeq2d | ⊢ ( 𝑝 = 𝑟 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑝 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑝 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ↔ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 50 | 45 49 | sylib | ⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 51 | 42 50 | jca | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐷 ) 𝑌 ∧ ∃ 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑍 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |