This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upciclem3 and upeu2 . (Contributed by Zhi Wang, 19-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| upciclem2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| upciclem2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | ||
| upciclem2.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | ||
| upciclem2.od | ⊢ · = ( comp ‘ 𝐷 ) | ||
| upciclem2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| upciclem2.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| upciclem2.nm | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | ||
| Assertion | upciclem2 | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upcic.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upcic.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upcic.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upcic.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upcic.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 7 | upcic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | upcic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | upciclem2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 10 | upciclem2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | |
| 11 | upciclem2.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 12 | upciclem2.od | ⊢ · = ( comp ‘ 𝐷 ) | |
| 13 | upciclem2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 14 | upciclem2.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 15 | upciclem2.nm | ⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) | |
| 16 | 6 | funcrcl3 | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 17 | 1 2 6 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 18 | 17 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |
| 19 | 17 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ 𝐶 ) |
| 20 | 1 3 4 6 7 8 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 21 | 20 13 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 22 | 17 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ 𝐶 ) |
| 23 | 1 3 4 6 8 9 | funcf2 | ⊢ ( 𝜑 → ( 𝑌 𝐺 𝑍 ) : ( 𝑌 𝐻 𝑍 ) ⟶ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 24 | 23 14 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 25 | 2 4 5 16 10 18 19 11 21 22 24 | catass | ⊢ ( 𝜑 → ( ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 26 | 1 3 12 5 6 7 8 9 13 14 | funcco | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ) ) |
| 27 | 26 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) ) |
| 28 | 15 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑁 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 29 | 25 27 28 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐿 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐾 ) ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑀 ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐿 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) 𝑁 ) ) |