This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unwf | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 3 | ssun1 | ⊢ ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) | |
| 4 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
| 5 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 6 | 5 | simpri | ⊢ Lim dom 𝑅1 |
| 7 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 8 | 6 7 | ax-mp | ⊢ Ord dom 𝑅1 |
| 9 | rankdmr1 | ⊢ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 | |
| 10 | ordunel | ⊢ ( ( Ord dom 𝑅1 ∧ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) | |
| 11 | 8 4 9 10 | mp3an | ⊢ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 |
| 12 | r1ord3g | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) ) | |
| 13 | 4 11 12 | mp2an | ⊢ ( ( rank ‘ 𝐴 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 14 | 3 13 | ax-mp | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 15 | 2 14 | sstrdi | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐴 ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 16 | r1rankidb | ⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐵 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ) |
| 18 | ssun2 | ⊢ ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) | |
| 19 | r1ord3g | ⊢ ( ( ( rank ‘ 𝐵 ) ∈ dom 𝑅1 ∧ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) ) | |
| 20 | 9 11 19 | mp2an | ⊢ ( ( rank ‘ 𝐵 ) ⊆ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) → ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 21 | 18 20 | ax-mp | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐵 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 22 | 17 21 | sstrdi | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐵 ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 23 | 15 22 | unssd | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 24 | fvex | ⊢ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ∈ V | |
| 25 | 24 | elpw2 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 26 | 23 25 | sylibr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 27 | r1sucg | ⊢ ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) = 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) | |
| 28 | 11 27 | ax-mp | ⊢ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) = 𝒫 ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) |
| 29 | 26 28 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) ) |
| 30 | r1elwf | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ( 𝑅1 ‘ suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 32 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 33 | sswf | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 34 | 32 33 | mpan2 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 35 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 36 | sswf | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 37 | 35 36 | mpan2 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) |
| 38 | 34 37 | jca | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 39 | 31 38 | impbii | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ ∪ ( 𝑅1 “ On ) ) |