This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unitary operator is linear. Theorem in AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unoplin | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 2 | f1of | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 | simplll | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑇 ∈ UniOp ) | |
| 5 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 6 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 7 | 5 6 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 8 | 7 | adantll | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 10 | simpr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑤 ∈ ℋ ) | |
| 11 | unopadj | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) | |
| 12 | 4 9 10 11 | syl3anc | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) |
| 13 | simprl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℂ ) | |
| 14 | 13 | ad2antrr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑥 ∈ ℂ ) |
| 15 | simprr | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) | |
| 16 | 15 | ad2antrr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑦 ∈ ℋ ) |
| 17 | simplr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → 𝑧 ∈ ℋ ) | |
| 18 | cnvunop | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 ∈ UniOp ) | |
| 19 | unopf1o | ⊢ ( ◡ 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 20 | f1of | ⊢ ( ◡ 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ ⟶ ℋ ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 22 | 21 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑤 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 23 | 22 | adantlr | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 24 | 23 | adantllr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 25 | hiassdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ ( ◡ 𝑇 ‘ 𝑤 ) ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) | |
| 26 | 14 16 17 24 25 | syl22anc | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) |
| 27 | 3 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 28 | 27 | adantrl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 30 | 3 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 32 | 31 | adantllr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 33 | hiassdi | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ∧ ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) = ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) ) | |
| 34 | 14 29 32 10 33 | syl22anc | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) = ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) ) |
| 35 | unopadj | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) = ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) | |
| 36 | 35 | 3expa | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) = ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) |
| 38 | 37 | adantlrl | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) |
| 39 | 38 | adantlr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) = ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) |
| 40 | unopadj | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) | |
| 41 | 40 | 3expa | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) |
| 42 | 41 | adantllr | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) = ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) |
| 43 | 39 42 | oveq12d | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 · ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑤 ) ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑤 ) ) = ( ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) ) |
| 44 | 34 43 | eqtr2d | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 · ( 𝑦 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) + ( 𝑧 ·ih ( ◡ 𝑇 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
| 45 | 12 26 44 | 3eqtrd | ⊢ ( ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ) |
| 47 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) | |
| 48 | 7 47 | sylan2 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 49 | 48 | anassrs | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ) |
| 50 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 51 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) | |
| 52 | 50 51 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 53 | 52 | an12s | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 55 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) | |
| 56 | 55 | adantlr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 57 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) | |
| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) |
| 59 | hial2eq | ⊢ ( ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ∈ ℋ ∧ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 60 | 49 58 59 | syl2anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 61 | 3 60 | sylanl1 | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ·ih 𝑤 ) = ( ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑤 ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 62 | 46 61 | mpbid | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 63 | 62 | ralrimiva | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 64 | 63 | ralrimivva | ⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 65 | ellnop | ⊢ ( 𝑇 ∈ LinOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 66 | 3 64 65 | sylanbrc | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) |