This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hial2eq | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 −ℎ 𝐵 ) → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) | |
| 3 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 −ℎ 𝐵 ) → ( 𝐵 ·ih 𝑥 ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = ( 𝐴 −ℎ 𝐵 ) → ( ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 5 | 4 | rspcv | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) → ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 6 | 1 5 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) → ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 7 | hi2eq | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 ·ih ( 𝐴 −ℎ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) | |
| 8 | 6 7 | sylibd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 9 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) | |
| 10 | 9 | ralrimivw | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) |
| 11 | 8 10 | impbid1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ 𝐴 = 𝐵 ) ) |