This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hiassdi | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ·ih 𝐷 ) = ( ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | ax-his2 | ⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ·ih 𝐷 ) = ( ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ·ih 𝐷 ) = ( ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 4 | 1 3 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ·ih 𝐷 ) = ( ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 5 | ax-his3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) = ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) ) | |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) = ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) ) |
| 7 | 6 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) = ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ·ℎ 𝐵 ) ·ih 𝐷 ) + ( 𝐶 ·ih 𝐷 ) ) = ( ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) + ( 𝐶 ·ih 𝐷 ) ) ) |
| 9 | 4 8 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ·ℎ 𝐵 ) +ℎ 𝐶 ) ·ih 𝐷 ) = ( ( 𝐴 · ( 𝐵 ·ih 𝐷 ) ) + ( 𝐶 ·ih 𝐷 ) ) ) |