This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopadj | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 2 | f1ocnvfv2 | ⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) = 𝐵 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) = 𝐵 ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) = 𝐵 ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) |
| 6 | f1ocnv | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 7 | f1of | ⊢ ( ◡ 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ ⟶ ℋ ) | |
| 8 | 1 6 7 | 3syl | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
| 11 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ ( ◡ 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) | |
| 12 | 10 11 | syld3an3 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) |
| 13 | 5 12 | eqtr3d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) |