This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | counop | ⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) ∈ UniOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | ⊢ ( 𝑆 ∈ UniOp → 𝑆 : ℋ –1-1-onto→ ℋ ) | |
| 2 | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 3 | f1oco | ⊢ ( ( 𝑆 : ℋ –1-1-onto→ ℋ ∧ 𝑇 : ℋ –1-1-onto→ ℋ ) → ( 𝑆 ∘ 𝑇 ) : ℋ –1-1-onto→ ℋ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) : ℋ –1-1-onto→ ℋ ) |
| 5 | f1ofo | ⊢ ( ( 𝑆 ∘ 𝑇 ) : ℋ –1-1-onto→ ℋ → ( 𝑆 ∘ 𝑇 ) : ℋ –onto→ ℋ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) : ℋ –onto→ ℋ ) |
| 7 | f1of | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) | |
| 8 | 2 7 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → 𝑇 : ℋ ⟶ ℋ ) |
| 10 | simpl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℋ ) | |
| 11 | fvco3 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 13 | simpr | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑦 ∈ ℋ ) | |
| 14 | fvco3 | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 15 | 9 13 14 | syl2an | ⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 16 | 12 15 | oveq12d | ⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 17 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 18 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 19 | 17 18 | anim12dan | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 20 | 8 19 | sylan | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 21 | unop | ⊢ ( ( 𝑆 ∈ UniOp ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) | |
| 22 | 21 | 3expb | ⊢ ( ( 𝑆 ∈ UniOp ∧ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 23 | 20 22 | sylan2 | ⊢ ( ( 𝑆 ∈ UniOp ∧ ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 24 | 23 | anassrs | ⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑆 ‘ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 25 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) | |
| 26 | 25 | 3expb | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 27 | 26 | adantll | ⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 28 | 16 24 27 | 3eqtrd | ⊢ ( ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 29 | 28 | ralrimivva | ⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 30 | elunop | ⊢ ( ( 𝑆 ∘ 𝑇 ) ∈ UniOp ↔ ( ( 𝑆 ∘ 𝑇 ) : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ·ih ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) | |
| 31 | 6 29 30 | sylanbrc | ⊢ ( ( 𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp ) → ( 𝑆 ∘ 𝑇 ) ∈ UniOp ) |