This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvunop | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 ∈ UniOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 2 | f1ocnv | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 3 | f1ofo | ⊢ ( ◡ 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –onto→ ℋ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –onto→ ℋ ) |
| 5 | 1 4 | syl | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ –onto→ ℋ ) |
| 6 | simpl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑇 ∈ UniOp ) | |
| 7 | fof | ⊢ ( ◡ 𝑇 : ℋ –onto→ ℋ → ◡ 𝑇 : ℋ ⟶ ℋ ) | |
| 8 | 5 7 | syl | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 10 | 9 | adantrr | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ◡ 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 11 | 8 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 12 | 11 | adantrl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ◡ 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 13 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( ◡ 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( ◡ 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) | |
| 14 | 6 10 12 13 | syl3anc | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) |
| 15 | f1ocnvfv2 | ⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) = 𝑥 ) | |
| 16 | 15 | adantrr | ⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) = 𝑥 ) |
| 17 | f1ocnvfv2 | ⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) = 𝑦 ) | |
| 18 | 17 | adantrl | ⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) = 𝑦 ) |
| 19 | 16 18 | oveq12d | ⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 20 | 1 19 | sylan | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 21 | 14 20 | eqtr3d | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 22 | 21 | ralrimivva | ⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 23 | elunop | ⊢ ( ◡ 𝑇 ∈ UniOp ↔ ( ◡ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) | |
| 24 | 5 22 23 | sylanbrc | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 ∈ UniOp ) |