This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopbd | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unoplin | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) | |
| 2 | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 3 | f1of | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 5 | nmop0h | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = 0 ) | |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | 5 6 | eqeltrdi | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 8 | 4 7 | sylan2 | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 9 | df-ne | ⊢ ( ℋ ≠ 0ℋ ↔ ¬ ℋ = 0ℋ ) | |
| 10 | nmopun | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = 1 ) | |
| 11 | 1re | ⊢ 1 ∈ ℝ | |
| 12 | 10 11 | eqeltrdi | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 13 | 9 12 | sylanbr | ⊢ ( ( ¬ ℋ = 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 14 | 8 13 | pm2.61ian | ⊢ ( 𝑇 ∈ UniOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 15 | elbdop2 | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) | |
| 16 | 1 14 15 | sylanbrc | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp ) |