This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopbd | |- ( T e. UniOp -> T e. BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unoplin | |- ( T e. UniOp -> T e. LinOp ) |
|
| 2 | unopf1o | |- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
|
| 3 | f1of | |- ( T : ~H -1-1-onto-> ~H -> T : ~H --> ~H ) |
|
| 4 | 2 3 | syl | |- ( T e. UniOp -> T : ~H --> ~H ) |
| 5 | nmop0h | |- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = 0 ) |
|
| 6 | 0re | |- 0 e. RR |
|
| 7 | 5 6 | eqeltrdi | |- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) e. RR ) |
| 8 | 4 7 | sylan2 | |- ( ( ~H = 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR ) |
| 9 | df-ne | |- ( ~H =/= 0H <-> -. ~H = 0H ) |
|
| 10 | nmopun | |- ( ( ~H =/= 0H /\ T e. UniOp ) -> ( normop ` T ) = 1 ) |
|
| 11 | 1re | |- 1 e. RR |
|
| 12 | 10 11 | eqeltrdi | |- ( ( ~H =/= 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR ) |
| 13 | 9 12 | sylanbr | |- ( ( -. ~H = 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR ) |
| 14 | 8 13 | pm2.61ian | |- ( T e. UniOp -> ( normop ` T ) e. RR ) |
| 15 | elbdop2 | |- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) ) |
|
| 16 | 1 14 15 | sylanbrc | |- ( T e. UniOp -> T e. BndLinOp ) |