This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ~H =/= 0H in nmopun .) (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmop0h | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ch0 | ⊢ 0ℋ = { 0ℎ } | |
| 2 | 1 | eqeq2i | ⊢ ( ℋ = 0ℋ ↔ ℋ = { 0ℎ } ) |
| 3 | feq3 | ⊢ ( ℋ = { 0ℎ } → ( 𝑇 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ { 0ℎ } ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( ℋ = 0ℋ → ( 𝑇 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ { 0ℎ } ) ) |
| 5 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 6 | 5 | elexi | ⊢ 0ℎ ∈ V |
| 7 | 6 | fconst2 | ⊢ ( 𝑇 : ℋ ⟶ { 0ℎ } ↔ 𝑇 = ( ℋ × { 0ℎ } ) ) |
| 8 | df0op2 | ⊢ 0hop = ( ℋ × 0ℋ ) | |
| 9 | 1 | xpeq2i | ⊢ ( ℋ × 0ℋ ) = ( ℋ × { 0ℎ } ) |
| 10 | 8 9 | eqtri | ⊢ 0hop = ( ℋ × { 0ℎ } ) |
| 11 | 10 | eqeq2i | ⊢ ( 𝑇 = 0hop ↔ 𝑇 = ( ℋ × { 0ℎ } ) ) |
| 12 | 7 11 | bitr4i | ⊢ ( 𝑇 : ℋ ⟶ { 0ℎ } ↔ 𝑇 = 0hop ) |
| 13 | 4 12 | bitrdi | ⊢ ( ℋ = 0ℋ → ( 𝑇 : ℋ ⟶ ℋ ↔ 𝑇 = 0hop ) ) |
| 14 | 13 | biimpa | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → 𝑇 = 0hop ) |
| 15 | 14 | fveq2d | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = ( normop ‘ 0hop ) ) |
| 16 | nmop0 | ⊢ ( normop ‘ 0hop ) = 0 | |
| 17 | 15 16 | eqtrdi | ⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = 0 ) |