This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopun | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unoplin | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) | |
| 2 | lnopf | ⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 | nmopval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑇 ∈ UniOp → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 6 | 5 | adantl | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 7 | nmopsetretHIL | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) | |
| 8 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 9 | 7 8 | sstrdi | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 10 | 3 9 | syl | ⊢ ( 𝑇 ∈ UniOp → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 11 | 10 | adantl | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 12 | 1xr | ⊢ 1 ∈ ℝ* | |
| 13 | 11 12 | jctir | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ) |
| 14 | vex | ⊢ 𝑧 ∈ V | |
| 15 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 18 | 14 17 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 19 | unopnorm | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) | |
| 20 | 19 | eqeq2d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑧 = ( normℎ ‘ 𝑦 ) ) ) |
| 21 | 20 | anbi2d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ 𝑦 ) ) ) ) |
| 22 | breq1 | ⊢ ( 𝑧 = ( normℎ ‘ 𝑦 ) → ( 𝑧 ≤ 1 ↔ ( normℎ ‘ 𝑦 ) ≤ 1 ) ) | |
| 23 | 22 | biimparc | ⊢ ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ 𝑦 ) ) → 𝑧 ≤ 1 ) |
| 24 | 21 23 | biimtrdi | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) ) |
| 25 | 24 | rexlimdva | ⊢ ( 𝑇 ∈ UniOp → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝑇 ∈ UniOp ∧ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → 𝑧 ≤ 1 ) |
| 27 | 18 26 | sylan2b | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) → 𝑧 ≤ 1 ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝑇 ∈ UniOp → ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ) |
| 29 | 28 | adantl | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ) |
| 30 | hne0 | ⊢ ( ℋ ≠ 0ℋ ↔ ∃ 𝑦 ∈ ℋ 𝑦 ≠ 0ℎ ) | |
| 31 | norm1hex | ⊢ ( ∃ 𝑦 ∈ ℋ 𝑦 ≠ 0ℎ ↔ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) | |
| 32 | 30 31 | sylbb | ⊢ ( ℋ ≠ 0ℋ → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |
| 33 | 32 | adantr | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |
| 34 | 1le1 | ⊢ 1 ≤ 1 | |
| 35 | breq1 | ⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ 1 ≤ 1 ) ) | |
| 36 | 34 35 | mpbiri | ⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( normℎ ‘ 𝑦 ) ≤ 1 ) |
| 37 | 36 | a1i | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( normℎ ‘ 𝑦 ) ≤ 1 ) ) |
| 38 | 19 | adantr | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
| 39 | eqeq2 | ⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = 1 ) ) | |
| 40 | 39 | adantl | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = 1 ) ) |
| 41 | 38 40 | mpbid | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = 1 ) |
| 42 | 41 | eqcomd | ⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 44 | 37 43 | jcad | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 45 | 44 | adantll | ⊢ ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 46 | 45 | reximdva | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 47 | 33 46 | mpd | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 48 | 1ex | ⊢ 1 ∈ V | |
| 49 | eqeq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 50 | 49 | anbi2d | ⊢ ( 𝑥 = 1 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 51 | 50 | rexbidv | ⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 52 | 48 51 | elab | ⊢ ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 53 | 47 52 | sylibr | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 54 | 53 | adantr | ⊢ ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑧 ∈ ℝ ) → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 55 | breq2 | ⊢ ( 𝑤 = 1 → ( 𝑧 < 𝑤 ↔ 𝑧 < 1 ) ) | |
| 56 | 55 | rspcev | ⊢ ( ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 57 | 54 56 | sylan | ⊢ ( ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 58 | 57 | ex | ⊢ ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑧 ∈ ℝ ) → ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 59 | 58 | ralrimiva | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 60 | supxr2 | ⊢ ( ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) | |
| 61 | 13 29 59 60 | syl12anc | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
| 62 | 6 61 | eqtrd | ⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = 1 ) |