This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unfilem1.1 | ⊢ 𝐴 ∈ ω | |
| unfilem1.2 | ⊢ 𝐵 ∈ ω | ||
| unfilem1.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) | ||
| Assertion | unfilem1 | ⊢ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfilem1.1 | ⊢ 𝐴 ∈ ω | |
| 2 | unfilem1.2 | ⊢ 𝐵 ∈ ω | |
| 3 | unfilem1.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 4 | elnn | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑥 ∈ ω ) | |
| 5 | 2 4 | mpan2 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ω ) |
| 6 | nnaord | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 7 | 2 1 6 | mp3an23 | ⊢ ( 𝑥 ∈ ω → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 9 | 8 | ibi | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) |
| 10 | nnaword1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) | |
| 11 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 12 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ω ) | |
| 13 | nnord | ⊢ ( ( 𝐴 +o 𝑥 ) ∈ ω → Ord ( 𝐴 +o 𝑥 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → Ord ( 𝐴 +o 𝑥 ) ) |
| 15 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord ( 𝐴 +o 𝑥 ) ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) | |
| 16 | 11 14 15 | syl2an2r | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
| 17 | 10 16 | mpbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) |
| 18 | 1 5 17 | sylancr | ⊢ ( 𝑥 ∈ 𝐵 → ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) |
| 19 | 9 18 | jca | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
| 20 | eleq1 | ⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ↔ ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 21 | eleq1 | ⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ 𝐴 ↔ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) | |
| 22 | 21 | notbid | ⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑦 = ( 𝐴 +o 𝑥 ) → ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) ) |
| 24 | 23 | biimparc | ⊢ ( ( ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 25 | 19 24 | sylan | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 26 | 25 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 27 | 1 2 | nnacli | ⊢ ( 𝐴 +o 𝐵 ) ∈ ω |
| 28 | elnn | ⊢ ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ( 𝐴 +o 𝐵 ) ∈ ω ) → 𝑦 ∈ ω ) | |
| 29 | 27 28 | mpan2 | ⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → 𝑦 ∈ ω ) |
| 30 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 31 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝑦 ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) | |
| 32 | 11 30 31 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
| 33 | nnawordex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ⊆ 𝑦 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 ) ) | |
| 34 | 32 33 | bitr3d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 ) ) |
| 35 | 1 29 34 | sylancr | ⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ¬ 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 ) ) |
| 36 | eleq1 | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 → ( ( 𝐴 +o 𝑥 ) ∈ ( 𝐴 +o 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 37 | 7 36 | sylan9bb | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 38 | 37 | biimprcd | ⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → 𝑥 ∈ 𝐵 ) ) |
| 39 | eqcom | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐴 +o 𝑥 ) ) | |
| 40 | 39 | biimpi | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 → 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 41 | 40 | adantl | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 42 | 38 41 | jca2 | ⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ( 𝑥 ∈ ω ∧ ( 𝐴 +o 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( 𝐴 +o 𝑥 ) ) ) ) |
| 43 | 42 | reximdv2 | ⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 44 | 35 43 | sylbid | ⊢ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) → ( ¬ 𝑦 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 45 | 44 | imp | ⊢ ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 46 | 26 45 | impbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ↔ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
| 47 | ovex | ⊢ ( 𝐴 +o 𝑥 ) ∈ V | |
| 48 | 3 47 | elrnmpti | ⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 49 | eldif | ⊢ ( 𝑦 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) | |
| 50 | 46 48 49 | 3bitr4i | ⊢ ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) |
| 51 | 50 | eqriv | ⊢ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |