This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unfilem1.1 | ⊢ 𝐴 ∈ ω | |
| unfilem1.2 | ⊢ 𝐵 ∈ ω | ||
| unfilem1.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) | ||
| Assertion | unfilem2 | ⊢ 𝐹 : 𝐵 –1-1-onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfilem1.1 | ⊢ 𝐴 ∈ ω | |
| 2 | unfilem1.2 | ⊢ 𝐵 ∈ ω | |
| 3 | unfilem1.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 4 | ovex | ⊢ ( 𝐴 +o 𝑥 ) ∈ V | |
| 5 | 4 3 | fnmpti | ⊢ 𝐹 Fn 𝐵 |
| 6 | 1 2 3 | unfilem1 | ⊢ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
| 7 | df-fo | ⊢ ( 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐹 Fn 𝐵 ∧ ran 𝐹 = ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) | |
| 8 | 5 6 7 | mpbir2an | ⊢ 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
| 9 | fof | ⊢ ( 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) → 𝐹 : 𝐵 ⟶ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ 𝐹 : 𝐵 ⟶ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑧 ) ) | |
| 12 | ovex | ⊢ ( 𝐴 +o 𝑧 ) ∈ V | |
| 13 | 11 3 12 | fvmpt | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 +o 𝑧 ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑤 ) ) | |
| 15 | ovex | ⊢ ( 𝐴 +o 𝑤 ) ∈ V | |
| 16 | 14 3 15 | fvmpt | ⊢ ( 𝑤 ∈ 𝐵 → ( 𝐹 ‘ 𝑤 ) = ( 𝐴 +o 𝑤 ) ) |
| 17 | 13 16 | eqeqan12d | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ) ) |
| 18 | elnn | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑧 ∈ ω ) | |
| 19 | 2 18 | mpan2 | ⊢ ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ω ) |
| 20 | elnn | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝑤 ∈ ω ) | |
| 21 | 2 20 | mpan2 | ⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ω ) |
| 22 | nnacan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω ) → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ↔ 𝑧 = 𝑤 ) ) | |
| 23 | 1 19 21 22 | mp3an3an | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐴 +o 𝑧 ) = ( 𝐴 +o 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
| 24 | 17 23 | bitrd | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
| 25 | 24 | biimpd | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 26 | 25 | rgen2 | ⊢ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) |
| 27 | dff13 | ⊢ ( 𝐹 : 𝐵 –1-1→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐹 : 𝐵 ⟶ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) | |
| 28 | 10 26 27 | mpbir2an | ⊢ 𝐹 : 𝐵 –1-1→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |
| 29 | df-f1o | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝐹 : 𝐵 –1-1→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∧ 𝐹 : 𝐵 –onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) | |
| 30 | 28 8 29 | mpbir2an | ⊢ 𝐹 : 𝐵 –1-1-onto→ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) |