This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ulmshft . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmshft.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmshft.w | ⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) | ||
| ulmshft.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmshft.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| ulmshft.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulmshft.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) | ||
| Assertion | ulmshftlem | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmshft.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmshft.w | ⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) | |
| 3 | ulmshft.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | ulmshft.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 5 | ulmshft.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 6 | ulmshft.h | ⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) | |
| 7 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 8 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 9 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) | |
| 10 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 11 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 12 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 13 | 1 7 8 9 10 11 12 | ulmi | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 14 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) | |
| 15 | 14 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝐾 ∈ ℤ ) |
| 17 | eluzadd | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑖 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 19 | 18 2 | eleqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 + 𝐾 ) ∈ 𝑊 ) |
| 20 | eluzelz | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑖 ∈ ℤ ) | |
| 21 | 15 20 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → 𝑖 ∈ ℤ ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐾 ∈ ℤ ) |
| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → 𝐾 ∈ ℤ ) |
| 25 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) | |
| 26 | eluzsub | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → ( 𝑘 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) | |
| 27 | 22 24 25 26 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → ( 𝑘 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 28 | fveq2 | ⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) | |
| 29 | 28 | fveq1d | ⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) ) |
| 30 | 29 | fvoveq1d | ⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 31 | 30 | breq1d | ⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 32 | 31 | ralbidv | ⊢ ( 𝑚 = ( 𝑘 − 𝐾 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 33 | 32 | rspcv | ⊢ ( ( 𝑘 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑖 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 34 | 27 33 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 35 | 34 | ralrimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 36 | fveq2 | ⊢ ( 𝑗 = ( 𝑖 + 𝐾 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ) | |
| 37 | 36 | raleqdv | ⊢ ( 𝑗 = ( 𝑖 + 𝐾 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 38 | 37 | rspcev | ⊢ ( ( ( 𝑖 + 𝐾 ) ∈ 𝑊 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 𝐾 ) ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 39 | 19 35 38 | syl6an | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 40 | 39 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 41 | 13 40 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 42 | 41 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 43 | 3 4 | zaddcld | ⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 45 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 46 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
| 47 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝐾 ∈ ℤ ) |
| 48 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ 𝑊 ) | |
| 49 | 48 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 50 | eluzsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 51 | 46 47 49 50 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 52 | 51 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝑛 − 𝐾 ) ∈ 𝑍 ) |
| 53 | 45 52 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 54 | 6 53 | fmpt3d | ⊢ ( 𝜑 → 𝐻 : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐻 : 𝑊 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 56 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → 𝐻 = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ) |
| 57 | 56 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ 𝑘 ) ) |
| 58 | fvoveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) | |
| 59 | eqid | ⊢ ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) = ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) | |
| 60 | fvex | ⊢ ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ∈ V | |
| 61 | 58 59 60 | fvmpt | ⊢ ( 𝑘 ∈ 𝑊 → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑛 ∈ 𝑊 ↦ ( 𝐹 ‘ ( 𝑛 − 𝐾 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
| 63 | 57 62 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ) |
| 64 | 63 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ ( 𝑘 ∈ 𝑊 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) ) |
| 65 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 66 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 68 | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 69 | 68 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝑆 ∈ V ) |
| 70 | 2 44 55 64 65 67 69 | ulm2 | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → ( 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ ( 𝑘 − 𝐾 ) ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 71 | 42 70 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
| 72 | 71 | ex | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) ) |