This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ulmshft . (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmshft.z | |- Z = ( ZZ>= ` M ) |
|
| ulmshft.w | |- W = ( ZZ>= ` ( M + K ) ) |
||
| ulmshft.m | |- ( ph -> M e. ZZ ) |
||
| ulmshft.k | |- ( ph -> K e. ZZ ) |
||
| ulmshft.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| ulmshft.h | |- ( ph -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
||
| Assertion | ulmshftlem | |- ( ph -> ( F ( ~~>u ` S ) G -> H ( ~~>u ` S ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmshft.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulmshft.w | |- W = ( ZZ>= ` ( M + K ) ) |
|
| 3 | ulmshft.m | |- ( ph -> M e. ZZ ) |
|
| 4 | ulmshft.k | |- ( ph -> K e. ZZ ) |
|
| 5 | ulmshft.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 6 | ulmshft.h | |- ( ph -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
|
| 7 | 3 | ad2antrr | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> M e. ZZ ) |
| 8 | 5 | ad2antrr | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> F : Z --> ( CC ^m S ) ) |
| 9 | eqidd | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ ( m e. Z /\ z e. S ) ) -> ( ( F ` m ) ` z ) = ( ( F ` m ) ` z ) ) |
|
| 10 | eqidd | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
|
| 11 | simplr | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> F ( ~~>u ` S ) G ) |
|
| 12 | simpr | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> x e. RR+ ) |
|
| 13 | 1 7 8 9 10 11 12 | ulmi | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> E. i e. Z A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x ) |
| 14 | simpr | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> i e. Z ) |
|
| 15 | 14 1 | eleqtrdi | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> i e. ( ZZ>= ` M ) ) |
| 16 | 4 | ad3antrrr | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> K e. ZZ ) |
| 17 | eluzadd | |- ( ( i e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( i + K ) e. ( ZZ>= ` ( M + K ) ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( i + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 19 | 18 2 | eleqtrrdi | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( i + K ) e. W ) |
| 20 | eluzelz | |- ( i e. ( ZZ>= ` M ) -> i e. ZZ ) |
|
| 21 | 15 20 | syl | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> i e. ZZ ) |
| 22 | 21 | adantr | |- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> i e. ZZ ) |
| 23 | 4 | adantr | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> K e. ZZ ) |
| 24 | 23 | ad3antrrr | |- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> K e. ZZ ) |
| 25 | simpr | |- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> k e. ( ZZ>= ` ( i + K ) ) ) |
|
| 26 | eluzsub | |- ( ( i e. ZZ /\ K e. ZZ /\ k e. ( ZZ>= ` ( i + K ) ) ) -> ( k - K ) e. ( ZZ>= ` i ) ) |
|
| 27 | 22 24 25 26 | syl3anc | |- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> ( k - K ) e. ( ZZ>= ` i ) ) |
| 28 | fveq2 | |- ( m = ( k - K ) -> ( F ` m ) = ( F ` ( k - K ) ) ) |
|
| 29 | 28 | fveq1d | |- ( m = ( k - K ) -> ( ( F ` m ) ` z ) = ( ( F ` ( k - K ) ) ` z ) ) |
| 30 | 29 | fvoveq1d | |- ( m = ( k - K ) -> ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) = ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) ) |
| 31 | 30 | breq1d | |- ( m = ( k - K ) -> ( ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x <-> ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 32 | 31 | ralbidv | |- ( m = ( k - K ) -> ( A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x <-> A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 33 | 32 | rspcv | |- ( ( k - K ) e. ( ZZ>= ` i ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 34 | 27 33 | syl | |- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 35 | 34 | ralrimdva | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> A. k e. ( ZZ>= ` ( i + K ) ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 36 | fveq2 | |- ( j = ( i + K ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( i + K ) ) ) |
|
| 37 | 36 | raleqdv | |- ( j = ( i + K ) -> ( A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x <-> A. k e. ( ZZ>= ` ( i + K ) ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 38 | 37 | rspcev | |- ( ( ( i + K ) e. W /\ A. k e. ( ZZ>= ` ( i + K ) ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) |
| 39 | 19 35 38 | syl6an | |- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 40 | 39 | rexlimdva | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> ( E. i e. Z A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 41 | 13 40 | mpd | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) |
| 42 | 41 | ralrimiva | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> A. x e. RR+ E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) |
| 43 | 3 4 | zaddcld | |- ( ph -> ( M + K ) e. ZZ ) |
| 44 | 43 | adantr | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> ( M + K ) e. ZZ ) |
| 45 | 5 | adantr | |- ( ( ph /\ n e. W ) -> F : Z --> ( CC ^m S ) ) |
| 46 | 3 | adantr | |- ( ( ph /\ n e. W ) -> M e. ZZ ) |
| 47 | 4 | adantr | |- ( ( ph /\ n e. W ) -> K e. ZZ ) |
| 48 | simpr | |- ( ( ph /\ n e. W ) -> n e. W ) |
|
| 49 | 48 2 | eleqtrdi | |- ( ( ph /\ n e. W ) -> n e. ( ZZ>= ` ( M + K ) ) ) |
| 50 | eluzsub | |- ( ( M e. ZZ /\ K e. ZZ /\ n e. ( ZZ>= ` ( M + K ) ) ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
|
| 51 | 46 47 49 50 | syl3anc | |- ( ( ph /\ n e. W ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
| 52 | 51 1 | eleqtrrdi | |- ( ( ph /\ n e. W ) -> ( n - K ) e. Z ) |
| 53 | 45 52 | ffvelcdmd | |- ( ( ph /\ n e. W ) -> ( F ` ( n - K ) ) e. ( CC ^m S ) ) |
| 54 | 6 53 | fmpt3d | |- ( ph -> H : W --> ( CC ^m S ) ) |
| 55 | 54 | adantr | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> H : W --> ( CC ^m S ) ) |
| 56 | 6 | ad2antrr | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
| 57 | 56 | fveq1d | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( H ` k ) = ( ( n e. W |-> ( F ` ( n - K ) ) ) ` k ) ) |
| 58 | fvoveq1 | |- ( n = k -> ( F ` ( n - K ) ) = ( F ` ( k - K ) ) ) |
|
| 59 | eqid | |- ( n e. W |-> ( F ` ( n - K ) ) ) = ( n e. W |-> ( F ` ( n - K ) ) ) |
|
| 60 | fvex | |- ( F ` ( k - K ) ) e. _V |
|
| 61 | 58 59 60 | fvmpt | |- ( k e. W -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` k ) = ( F ` ( k - K ) ) ) |
| 62 | 61 | ad2antrl | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` k ) = ( F ` ( k - K ) ) ) |
| 63 | 57 62 | eqtrd | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( H ` k ) = ( F ` ( k - K ) ) ) |
| 64 | 63 | fveq1d | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( ( H ` k ) ` z ) = ( ( F ` ( k - K ) ) ` z ) ) |
| 65 | eqidd | |- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
|
| 66 | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 67 | 66 | adantl | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> G : S --> CC ) |
| 68 | ulmscl | |- ( F ( ~~>u ` S ) G -> S e. _V ) |
|
| 69 | 68 | adantl | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> S e. _V ) |
| 70 | 2 44 55 64 65 67 69 | ulm2 | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> ( H ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 71 | 42 70 | mpbird | |- ( ( ph /\ F ( ~~>u ` S ) G ) -> H ( ~~>u ` S ) G ) |
| 72 | 71 | ex | |- ( ph -> ( F ( ~~>u ` S ) G -> H ( ~~>u ` S ) G ) ) |