This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced subgraph S of a hypergraph G obtained by removing one vertex is actually a subgraph of G . A subgraph is called induced orspanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in Bollobas p. 2 and section 1.1 in Diestel p. 4). (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspan1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| uhgrspan1.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } | ||
| uhgrspan1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 | ||
| Assertion | uhgrspan1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 SubGraph 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspan1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | uhgrspan1.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } | |
| 4 | uhgrspan1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 | |
| 5 | difssd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑁 } ) ⊆ 𝑉 ) | |
| 6 | 1 2 3 4 | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) |
| 7 | resresdm | ⊢ ( ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ) | |
| 8 | 6 7 | mp1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
| 9 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 10 | fvelima | ⊢ ( ( Fun 𝐼 ∧ 𝑐 ∈ ( 𝐼 “ 𝐹 ) ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) | |
| 11 | 10 | ex | ⊢ ( Fun 𝐼 → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 ) ) |
| 14 | eqidd | ⊢ ( 𝑖 = 𝑗 → 𝑁 = 𝑁 ) | |
| 15 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝐼 ‘ 𝑖 ) = ( 𝐼 ‘ 𝑗 ) ) | |
| 16 | 14 15 | neleq12d | ⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) ↔ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) |
| 17 | 16 3 | elrab2 | ⊢ ( 𝑗 ∈ 𝐹 ↔ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) |
| 18 | fvexd | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ∈ V ) | |
| 19 | 1 2 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ⊆ 𝑉 ) |
| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ⊆ 𝑉 ) |
| 21 | simprr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) | |
| 22 | elpwdifsn | ⊢ ( ( ( 𝐼 ‘ 𝑗 ) ∈ V ∧ ( 𝐼 ‘ 𝑗 ) ⊆ 𝑉 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) → ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) | |
| 23 | 18 20 21 22 | syl3anc | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 24 | eleq1 | ⊢ ( 𝑐 = ( 𝐼 ‘ 𝑗 ) → ( 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) | |
| 25 | 24 | eqcoms | ⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → ( 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 26 | 23 25 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∉ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
| 28 | 17 27 | biimtrid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ 𝐹 → ( ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
| 29 | 28 | rexlimdv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ 𝐹 ( 𝐼 ‘ 𝑗 ) = 𝑐 → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 30 | 13 29 | syld | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑐 ∈ ( 𝐼 “ 𝐹 ) → 𝑐 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 31 | 30 | ssrdv | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ 𝐹 ) ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 32 | opex | ⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ∈ V | |
| 33 | 4 32 | eqeltri | ⊢ 𝑆 ∈ V |
| 34 | 33 | a1i | ⊢ ( 𝑁 ∈ 𝑉 → 𝑆 ∈ V ) |
| 35 | 1 2 3 4 | uhgrspan1lem2 | ⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 36 | 35 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 37 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 38 | 6 | rneqi | ⊢ ran ( iEdg ‘ 𝑆 ) = ran ( 𝐼 ↾ 𝐹 ) |
| 39 | edgval | ⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) | |
| 40 | df-ima | ⊢ ( 𝐼 “ 𝐹 ) = ran ( 𝐼 ↾ 𝐹 ) | |
| 41 | 38 39 40 | 3eqtr4ri | ⊢ ( 𝐼 “ 𝐹 ) = ( Edg ‘ 𝑆 ) |
| 42 | 36 1 37 2 41 | issubgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ∈ V ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( 𝑉 ∖ { 𝑁 } ) ⊆ 𝑉 ∧ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝐼 “ 𝐹 ) ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
| 43 | 34 42 | sylan2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( 𝑉 ∖ { 𝑁 } ) ⊆ 𝑉 ∧ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝐼 “ 𝐹 ) ⊆ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) ) |
| 44 | 5 8 31 43 | mpbir3and | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 SubGraph 𝐺 ) |