This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a set to be a subgraph of another set. (Contributed by AV, 16-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| issubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | ||
| issubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | ||
| issubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | ||
| issubgr.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | ||
| Assertion | issubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | issubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | |
| 3 | issubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | |
| 4 | issubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | |
| 5 | issubgr.e | ⊢ 𝐸 = ( Edg ‘ 𝑆 ) | |
| 6 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Vtx ‘ 𝑠 ) = ( Vtx ‘ 𝑆 ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( Vtx ‘ 𝑠 ) = ( Vtx ‘ 𝑆 ) ) |
| 8 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
| 10 | 7 9 | sseq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ↔ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( iEdg ‘ 𝑠 ) = ( iEdg ‘ 𝑆 ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( iEdg ‘ 𝑠 ) = ( iEdg ‘ 𝑆 ) ) |
| 13 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 15 | 11 | dmeqd | ⊢ ( 𝑠 = 𝑆 → dom ( iEdg ‘ 𝑠 ) = dom ( iEdg ‘ 𝑆 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → dom ( iEdg ‘ 𝑠 ) = dom ( iEdg ‘ 𝑆 ) ) |
| 17 | 14 16 | reseq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
| 18 | 12 17 | eqeq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ↔ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Edg ‘ 𝑠 ) = ( Edg ‘ 𝑆 ) ) | |
| 20 | 6 | pweqd | ⊢ ( 𝑠 = 𝑆 → 𝒫 ( Vtx ‘ 𝑠 ) = 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 21 | 19 20 | sseq12d | ⊢ ( 𝑠 = 𝑆 → ( ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ↔ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ↔ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 23 | 10 18 22 | 3anbi123d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑔 = 𝐺 ) → ( ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
| 24 | df-subgr | ⊢ SubGraph = { 〈 𝑠 , 𝑔 〉 ∣ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) } | |
| 25 | 23 24 | brabga | ⊢ ( ( 𝑆 ∈ 𝑈 ∧ 𝐺 ∈ 𝑊 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
| 26 | 25 | ancoms | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
| 27 | 1 2 | sseq12i | ⊢ ( 𝑉 ⊆ 𝐴 ↔ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 28 | 3 | dmeqi | ⊢ dom 𝐼 = dom ( iEdg ‘ 𝑆 ) |
| 29 | 4 28 | reseq12i | ⊢ ( 𝐵 ↾ dom 𝐼 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) |
| 30 | 3 29 | eqeq12i | ⊢ ( 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ↔ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
| 31 | 1 | pweqi | ⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝑆 ) |
| 32 | 5 31 | sseq12i | ⊢ ( 𝐸 ⊆ 𝒫 𝑉 ↔ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 33 | 27 30 32 | 3anbi123i | ⊢ ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 34 | 26 33 | bitr4di | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ 𝐸 ⊆ 𝒫 𝑉 ) ) ) |