This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upgrres . (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| upgrres.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | upgrreslem | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | upgrres.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 4 | df-ima | ⊢ ( 𝐸 “ 𝐹 ) = ran ( 𝐸 ↾ 𝐹 ) | |
| 5 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) ) | |
| 6 | neleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) ) |
| 8 | 7 3 | elrab2 | ⊢ ( 𝑗 ∈ 𝐹 ↔ ( 𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) ) |
| 9 | 1 2 | upgrf | ⊢ ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 10 | ffvelcdm | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ∧ 𝑗 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) | |
| 11 | fveq2 | ⊢ ( 𝑝 = ( 𝐸 ‘ 𝑗 ) → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ) | |
| 12 | 11 | breq1d | ⊢ ( 𝑝 = ( 𝐸 ‘ 𝑗 ) → ( ( ♯ ‘ 𝑝 ) ≤ 2 ↔ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ) |
| 13 | 12 | elrab | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ) |
| 14 | eldifsn | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) ) | |
| 15 | simpl | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ) | |
| 16 | elpwi | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 → ( 𝐸 ‘ 𝑗 ) ⊆ 𝑉 ) | |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ⊆ 𝑉 ) |
| 18 | simpr | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) | |
| 19 | elpwdifsn | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ ( 𝐸 ‘ 𝑗 ) ⊆ 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) | |
| 20 | 15 17 18 19 | syl3anc | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 21 | 20 | ex | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 𝑉 ∧ ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 23 | 14 22 | sylbi | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ) |
| 26 | eldifsni | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) | |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) |
| 29 | eldifsn | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ↔ ( ( 𝐸 ‘ 𝑗 ) ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∧ ( 𝐸 ‘ 𝑗 ) ≠ ∅ ) ) | |
| 30 | 25 28 29 | sylanbrc | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ) |
| 31 | simpr | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) | |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) |
| 33 | 12 30 32 | elrabd | ⊢ ( ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 34 | 33 | ex | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 35 | 34 | a1d | ⊢ ( ( ( 𝐸 ‘ 𝑗 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑗 ) ) ≤ 2 ) → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
| 36 | 13 35 | sylbi | ⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
| 37 | 10 36 | syl | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ∧ 𝑗 ∈ dom 𝐸 ) → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) |
| 38 | 37 | ex | ⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } → ( 𝑗 ∈ dom 𝐸 → ( 𝑁 ∈ 𝑉 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) ) |
| 39 | 38 | com23 | ⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } → ( 𝑁 ∈ 𝑉 → ( 𝑗 ∈ dom 𝐸 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) ) |
| 40 | 9 39 | syl | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑁 ∈ 𝑉 → ( 𝑗 ∈ dom 𝐸 → ( 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) ) ) |
| 41 | 40 | imp4b | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ ( 𝐸 ‘ 𝑗 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 42 | 8 41 | biimtrid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ 𝐹 → ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 43 | 42 | ralrimiv | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑗 ∈ 𝐹 ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 44 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 45 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 46 | 44 45 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun 𝐸 ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → Fun 𝐸 ) |
| 48 | 3 | ssrab3 | ⊢ 𝐹 ⊆ dom 𝐸 |
| 49 | funimass4 | ⊢ ( ( Fun 𝐸 ∧ 𝐹 ⊆ dom 𝐸 ) → ( ( 𝐸 “ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ∀ 𝑗 ∈ 𝐹 ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) | |
| 50 | 47 48 49 | sylancl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝐸 “ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ↔ ∀ 𝑗 ∈ 𝐹 ( 𝐸 ‘ 𝑗 ) ∈ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) ) |
| 51 | 43 50 | mpbird | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 “ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
| 52 | 4 51 | eqsstrrid | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ ( 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |