This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced subgraph S of a hypergraph G obtained by removing one vertex is actually a subgraph of G . A subgraph is called induced orspanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in Bollobas p. 2 and section 1.1 in Diestel p. 4). (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan1.v | |- V = ( Vtx ` G ) |
|
| uhgrspan1.i | |- I = ( iEdg ` G ) |
||
| uhgrspan1.f | |- F = { i e. dom I | N e/ ( I ` i ) } |
||
| uhgrspan1.s | |- S = <. ( V \ { N } ) , ( I |` F ) >. |
||
| Assertion | uhgrspan1 | |- ( ( G e. UHGraph /\ N e. V ) -> S SubGraph G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgrspan1.i | |- I = ( iEdg ` G ) |
|
| 3 | uhgrspan1.f | |- F = { i e. dom I | N e/ ( I ` i ) } |
|
| 4 | uhgrspan1.s | |- S = <. ( V \ { N } ) , ( I |` F ) >. |
|
| 5 | difssd | |- ( ( G e. UHGraph /\ N e. V ) -> ( V \ { N } ) C_ V ) |
|
| 6 | 1 2 3 4 | uhgrspan1lem3 | |- ( iEdg ` S ) = ( I |` F ) |
| 7 | resresdm | |- ( ( iEdg ` S ) = ( I |` F ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) ) |
|
| 8 | 6 7 | mp1i | |- ( ( G e. UHGraph /\ N e. V ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) ) |
| 9 | 2 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 10 | fvelima | |- ( ( Fun I /\ c e. ( I " F ) ) -> E. j e. F ( I ` j ) = c ) |
|
| 11 | 10 | ex | |- ( Fun I -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) |
| 12 | 9 11 | syl | |- ( G e. UHGraph -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) |
| 13 | 12 | adantr | |- ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) |
| 14 | eqidd | |- ( i = j -> N = N ) |
|
| 15 | fveq2 | |- ( i = j -> ( I ` i ) = ( I ` j ) ) |
|
| 16 | 14 15 | neleq12d | |- ( i = j -> ( N e/ ( I ` i ) <-> N e/ ( I ` j ) ) ) |
| 17 | 16 3 | elrab2 | |- ( j e. F <-> ( j e. dom I /\ N e/ ( I ` j ) ) ) |
| 18 | fvexd | |- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. _V ) |
|
| 19 | 1 2 | uhgrss | |- ( ( G e. UHGraph /\ j e. dom I ) -> ( I ` j ) C_ V ) |
| 20 | 19 | ad2ant2r | |- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) C_ V ) |
| 21 | simprr | |- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> N e/ ( I ` j ) ) |
|
| 22 | elpwdifsn | |- ( ( ( I ` j ) e. _V /\ ( I ` j ) C_ V /\ N e/ ( I ` j ) ) -> ( I ` j ) e. ~P ( V \ { N } ) ) |
|
| 23 | 18 20 21 22 | syl3anc | |- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. ~P ( V \ { N } ) ) |
| 24 | eleq1 | |- ( c = ( I ` j ) -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) ) |
|
| 25 | 24 | eqcoms | |- ( ( I ` j ) = c -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) ) |
| 26 | 23 25 | syl5ibrcom | |- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) |
| 27 | 26 | ex | |- ( ( G e. UHGraph /\ N e. V ) -> ( ( j e. dom I /\ N e/ ( I ` j ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) ) |
| 28 | 17 27 | biimtrid | |- ( ( G e. UHGraph /\ N e. V ) -> ( j e. F -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) ) |
| 29 | 28 | rexlimdv | |- ( ( G e. UHGraph /\ N e. V ) -> ( E. j e. F ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) |
| 30 | 13 29 | syld | |- ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> c e. ~P ( V \ { N } ) ) ) |
| 31 | 30 | ssrdv | |- ( ( G e. UHGraph /\ N e. V ) -> ( I " F ) C_ ~P ( V \ { N } ) ) |
| 32 | opex | |- <. ( V \ { N } ) , ( I |` F ) >. e. _V |
|
| 33 | 4 32 | eqeltri | |- S e. _V |
| 34 | 33 | a1i | |- ( N e. V -> S e. _V ) |
| 35 | 1 2 3 4 | uhgrspan1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| 36 | 35 | eqcomi | |- ( V \ { N } ) = ( Vtx ` S ) |
| 37 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 38 | 6 | rneqi | |- ran ( iEdg ` S ) = ran ( I |` F ) |
| 39 | edgval | |- ( Edg ` S ) = ran ( iEdg ` S ) |
|
| 40 | df-ima | |- ( I " F ) = ran ( I |` F ) |
|
| 41 | 38 39 40 | 3eqtr4ri | |- ( I " F ) = ( Edg ` S ) |
| 42 | 36 1 37 2 41 | issubgr | |- ( ( G e. UHGraph /\ S e. _V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) ) |
| 43 | 34 42 | sylan2 | |- ( ( G e. UHGraph /\ N e. V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) ) |
| 44 | 5 8 31 43 | mpbir3and | |- ( ( G e. UHGraph /\ N e. V ) -> S SubGraph G ) |