This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspan1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| uhgrspan1.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } | ||
| uhgrspan1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 | ||
| Assertion | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspan1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | uhgrspan1.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ ( 𝐼 ‘ 𝑖 ) } | |
| 4 | uhgrspan1.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 | |
| 5 | 4 | fveq2i | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ) |
| 6 | 1 2 3 | uhgrspan1lem1 | ⊢ ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) |
| 7 | opiedgfv | ⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ V ∧ ( 𝐼 ↾ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ) = ( 𝐼 ↾ 𝐹 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( iEdg ‘ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐼 ↾ 𝐹 ) 〉 ) = ( 𝐼 ↾ 𝐹 ) |
| 9 | 5 8 | eqtri | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ 𝐹 ) |