This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ufildr.1 | ⊢ 𝐽 = ( 𝐹 ∪ { ∅ } ) | |
| Assertion | ufildr | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) = 𝒫 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufildr.1 | ⊢ 𝐽 = ( 𝐹 ∪ { ∅ } ) | |
| 2 | elssuni | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) | |
| 3 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 4 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 6 | 1 | unieqi | ⊢ ∪ 𝐽 = ∪ ( 𝐹 ∪ { ∅ } ) |
| 7 | uniun | ⊢ ∪ ( 𝐹 ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∪ { ∅ } ) | |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | 8 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 10 | 9 | uneq2i | ⊢ ( ∪ 𝐹 ∪ ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∅ ) |
| 11 | un0 | ⊢ ( ∪ 𝐹 ∪ ∅ ) = ∪ 𝐹 | |
| 12 | 7 10 11 | 3eqtri | ⊢ ∪ ( 𝐹 ∪ { ∅ } ) = ∪ 𝐹 |
| 13 | 6 12 | eqtr2i | ⊢ ∪ 𝐹 = ∪ 𝐽 |
| 14 | 5 13 | eqtr3di | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 15 | 14 | sseq2d | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 ↔ 𝑥 ⊆ ∪ 𝐽 ) ) |
| 16 | 2 15 | imbitrrid | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ 𝑋 ) ) |
| 17 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 18 | 17 | cldss | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 19 | 18 15 | imbitrrid | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ 𝑋 ) ) |
| 20 | 16 19 | jaod | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ 𝑋 ) ) |
| 21 | ufilss | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) | |
| 22 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ { ∅ } ) | |
| 23 | 22 1 | sseqtrri | ⊢ 𝐹 ⊆ 𝐽 |
| 24 | 23 | a1i | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ 𝐽 ) |
| 25 | 24 | sseld | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ 𝐽 ) ) |
| 26 | 24 | sseld | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 27 | filconn | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) | |
| 28 | conntop | ⊢ ( ( 𝐹 ∪ { ∅ } ) ∈ Conn → ( 𝐹 ∪ { ∅ } ) ∈ Top ) | |
| 29 | 3 27 28 | 3syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Top ) |
| 30 | 1 29 | eqeltrid | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 31 | 15 | biimpa | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 32 | 17 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 33 | 30 31 32 | syl2an2r | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 34 | 14 | difeq1d | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) = ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 35 | 34 | eleq1d | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 37 | 33 36 | bitr4d | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) ) |
| 38 | 26 37 | sylibrd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 39 | 25 38 | orim12d | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) → ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 40 | 21 39 | mpd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 41 | 40 | ex | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 42 | 20 41 | impbid | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ↔ 𝑥 ⊆ 𝑋 ) ) |
| 43 | elun | ⊢ ( 𝑥 ∈ ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝑥 ∈ 𝐽 ∨ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 44 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋 ) | |
| 45 | 42 43 44 | 3bitr4g | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) ↔ 𝑥 ∈ 𝒫 𝑋 ) ) |
| 46 | 45 | eqrdv | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 ∪ ( Clsd ‘ 𝐽 ) ) = 𝒫 𝑋 ) |