This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilen | |- ( _om ~<_ X -> E. f e. ( UFil ` X ) A. x e. f x ~~ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | 1 | brrelex2i | |- ( _om ~<_ X -> X e. _V ) |
| 3 | numth3 | |- ( X e. _V -> X e. dom card ) |
|
| 4 | 2 3 | syl | |- ( _om ~<_ X -> X e. dom card ) |
| 5 | csdfil | |- ( ( X e. dom card /\ _om ~<_ X ) -> { y e. ~P X | ( X \ y ) ~< X } e. ( Fil ` X ) ) |
|
| 6 | 4 5 | mpancom | |- ( _om ~<_ X -> { y e. ~P X | ( X \ y ) ~< X } e. ( Fil ` X ) ) |
| 7 | filssufil | |- ( { y e. ~P X | ( X \ y ) ~< X } e. ( Fil ` X ) -> E. f e. ( UFil ` X ) { y e. ~P X | ( X \ y ) ~< X } C_ f ) |
|
| 8 | 6 7 | syl | |- ( _om ~<_ X -> E. f e. ( UFil ` X ) { y e. ~P X | ( X \ y ) ~< X } C_ f ) |
| 9 | elfvex | |- ( f e. ( UFil ` X ) -> X e. _V ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> X e. _V ) |
| 11 | ufilfil | |- ( f e. ( UFil ` X ) -> f e. ( Fil ` X ) ) |
|
| 12 | filelss | |- ( ( f e. ( Fil ` X ) /\ x e. f ) -> x C_ X ) |
|
| 13 | 11 12 | sylan | |- ( ( f e. ( UFil ` X ) /\ x e. f ) -> x C_ X ) |
| 14 | 13 | adantll | |- ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> x C_ X ) |
| 15 | ssdomg | |- ( X e. _V -> ( x C_ X -> x ~<_ X ) ) |
|
| 16 | 10 14 15 | sylc | |- ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> x ~<_ X ) |
| 17 | filfbas | |- ( f e. ( Fil ` X ) -> f e. ( fBas ` X ) ) |
|
| 18 | 11 17 | syl | |- ( f e. ( UFil ` X ) -> f e. ( fBas ` X ) ) |
| 19 | 18 | adantl | |- ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) -> f e. ( fBas ` X ) ) |
| 20 | fbncp | |- ( ( f e. ( fBas ` X ) /\ x e. f ) -> -. ( X \ x ) e. f ) |
|
| 21 | 19 20 | sylan | |- ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> -. ( X \ x ) e. f ) |
| 22 | difeq2 | |- ( y = ( X \ x ) -> ( X \ y ) = ( X \ ( X \ x ) ) ) |
|
| 23 | 22 | breq1d | |- ( y = ( X \ x ) -> ( ( X \ y ) ~< X <-> ( X \ ( X \ x ) ) ~< X ) ) |
| 24 | difss | |- ( X \ x ) C_ X |
|
| 25 | elpw2g | |- ( X e. _V -> ( ( X \ x ) e. ~P X <-> ( X \ x ) C_ X ) ) |
|
| 26 | 24 25 | mpbiri | |- ( X e. _V -> ( X \ x ) e. ~P X ) |
| 27 | 26 | 3ad2ant1 | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ x ) e. ~P X ) |
| 28 | simp2 | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> x C_ X ) |
|
| 29 | dfss4 | |- ( x C_ X <-> ( X \ ( X \ x ) ) = x ) |
|
| 30 | 28 29 | sylib | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ ( X \ x ) ) = x ) |
| 31 | simp3 | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> x ~< X ) |
|
| 32 | 30 31 | eqbrtrd | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ ( X \ x ) ) ~< X ) |
| 33 | 23 27 32 | elrabd | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( X \ x ) e. { y e. ~P X | ( X \ y ) ~< X } ) |
| 34 | ssel | |- ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> ( ( X \ x ) e. { y e. ~P X | ( X \ y ) ~< X } -> ( X \ x ) e. f ) ) |
|
| 35 | 33 34 | syl5com | |- ( ( X e. _V /\ x C_ X /\ x ~< X ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> ( X \ x ) e. f ) ) |
| 36 | 35 | 3expa | |- ( ( ( X e. _V /\ x C_ X ) /\ x ~< X ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> ( X \ x ) e. f ) ) |
| 37 | 36 | impancom | |- ( ( ( X e. _V /\ x C_ X ) /\ { y e. ~P X | ( X \ y ) ~< X } C_ f ) -> ( x ~< X -> ( X \ x ) e. f ) ) |
| 38 | 37 | con3d | |- ( ( ( X e. _V /\ x C_ X ) /\ { y e. ~P X | ( X \ y ) ~< X } C_ f ) -> ( -. ( X \ x ) e. f -> -. x ~< X ) ) |
| 39 | 38 | impancom | |- ( ( ( X e. _V /\ x C_ X ) /\ -. ( X \ x ) e. f ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> -. x ~< X ) ) |
| 40 | 10 14 21 39 | syl21anc | |- ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> -. x ~< X ) ) |
| 41 | bren2 | |- ( x ~~ X <-> ( x ~<_ X /\ -. x ~< X ) ) |
|
| 42 | 41 | simplbi2 | |- ( x ~<_ X -> ( -. x ~< X -> x ~~ X ) ) |
| 43 | 16 40 42 | sylsyld | |- ( ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) /\ x e. f ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> x ~~ X ) ) |
| 44 | 43 | ralrimdva | |- ( ( _om ~<_ X /\ f e. ( UFil ` X ) ) -> ( { y e. ~P X | ( X \ y ) ~< X } C_ f -> A. x e. f x ~~ X ) ) |
| 45 | 44 | reximdva | |- ( _om ~<_ X -> ( E. f e. ( UFil ` X ) { y e. ~P X | ( X \ y ) ~< X } C_ f -> E. f e. ( UFil ` X ) A. x e. f x ~~ X ) ) |
| 46 | 8 45 | mpd | |- ( _om ~<_ X -> E. f e. ( UFil ` X ) A. x e. f x ~~ X ) |