This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009) (Revised by Mario Carneiro, 12-Dec-2013) (Revised by Stefan O'Rear, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fixufil | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( UFil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uffix | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) | |
| 2 | 1 | simprd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) |
| 3 | 1 | simpld | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
| 4 | fgcl | ⊢ ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 filGen { { 𝐴 } } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 6 | 2 5 | eqeltrd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
| 7 | undif2 | ⊢ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) = ( 𝑦 ∪ 𝑋 ) | |
| 8 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) | |
| 9 | ssequn1 | ⊢ ( 𝑦 ⊆ 𝑋 ↔ ( 𝑦 ∪ 𝑋 ) = 𝑋 ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝑦 ∪ 𝑋 ) = 𝑋 ) |
| 11 | 7 10 | eqtr2id | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑋 = ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ) ) |
| 13 | 12 | biimpac | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝒫 𝑋 ) → 𝐴 ∈ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ) |
| 14 | elun | ⊢ ( 𝐴 ∈ ( 𝑦 ∪ ( 𝑋 ∖ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
| 16 | 15 | adantll | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
| 17 | ibar | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → ( 𝐴 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) ) |
| 19 | difss | ⊢ ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 | |
| 20 | elpw2g | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑦 ) ⊆ 𝑋 ) ) | |
| 21 | 19 20 | mpbiri | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 23 | 22 | biantrurd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ↔ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
| 24 | 18 23 | orbi12d | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) ) |
| 25 | 16 24 | mpbid | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
| 27 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 28 | 27 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) |
| 29 | eleq2 | ⊢ ( 𝑥 = ( 𝑋 ∖ 𝑦 ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) | |
| 30 | 29 | elrab | ⊢ ( ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) |
| 31 | 28 30 | orbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ↔ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
| 32 | 31 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ∨ ( ( 𝑋 ∖ 𝑦 ) ∈ 𝒫 𝑋 ∧ 𝐴 ∈ ( 𝑋 ∖ 𝑦 ) ) ) ) |
| 33 | 26 32 | sylibr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) |
| 34 | isufil | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( UFil ‘ 𝑋 ) ↔ ( { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∨ ( 𝑋 ∖ 𝑦 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ) ) ) | |
| 35 | 6 33 34 | sylanbrc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ∈ ( UFil ‘ 𝑋 ) ) |