This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
| tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | ||
| Assertion | tz9.12lem3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
| 2 | tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
| 3 | 2 | funmpt2 | ⊢ Fun 𝐹 |
| 4 | fveq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑅1 ‘ 𝑣 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑣 = 𝑦 → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 6 | 5 | rspcev | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑣 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ) |
| 7 | rabn0 | ⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ↔ ∃ 𝑣 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) |
| 9 | intex | ⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ↔ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) ) ) | |
| 13 | 12 | rabbidv | ⊢ ( 𝑧 = 𝑥 → { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } = { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 14 | 13 | inteqd | ⊢ ( 𝑧 = 𝑥 → ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ↔ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) ) |
| 16 | 2 | dmmpt | ⊢ dom 𝐹 = { 𝑧 ∈ V ∣ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V } |
| 17 | 15 16 | elrab2 | ⊢ ( 𝑥 ∈ dom 𝐹 ↔ ( 𝑥 ∈ V ∧ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) ) |
| 18 | 11 17 | mpbiran | ⊢ ( 𝑥 ∈ dom 𝐹 ↔ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) |
| 19 | 10 18 | sylibr | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 20 | funfvima | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) ) ) | |
| 21 | 3 19 20 | sylancr | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) ) ) |
| 22 | 1 2 | tz9.12lem2 | ⊢ suc ∪ ( 𝐹 “ 𝐴 ) ∈ On |
| 23 | 1 2 | tz9.12lem1 | ⊢ ( 𝐹 “ 𝐴 ) ⊆ On |
| 24 | onsucuni | ⊢ ( ( 𝐹 “ 𝐴 ) ⊆ On → ( 𝐹 “ 𝐴 ) ⊆ suc ∪ ( 𝐹 “ 𝐴 ) ) | |
| 25 | 23 24 | ax-mp | ⊢ ( 𝐹 “ 𝐴 ) ⊆ suc ∪ ( 𝐹 “ 𝐴 ) |
| 26 | 25 | sseli | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ suc ∪ ( 𝐹 “ 𝐴 ) ) |
| 27 | r1ord2 | ⊢ ( suc ∪ ( 𝐹 “ 𝐴 ) ∈ On → ( ( 𝐹 ‘ 𝑥 ) ∈ suc ∪ ( 𝐹 “ 𝐴 ) → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) | |
| 28 | 22 26 27 | mpsyl | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝐴 ) → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 29 | 21 28 | syl6 | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 31 | 14 2 | fvmptg | ⊢ ( ( 𝑥 ∈ V ∧ ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V ) → ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 32 | 11 31 | mpan | ⊢ ( ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ V → ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 33 | 9 32 | sylbi | ⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ → ( 𝐹 ‘ 𝑥 ) = ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 34 | ssrab2 | ⊢ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On | |
| 35 | onint | ⊢ ( ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ⊆ On ∧ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ ) → ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
| 36 | 34 35 | mpan | ⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ → ∩ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 37 | 33 36 | eqeltrd | ⊢ ( { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ) |
| 38 | fveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 39 | 38 | eleq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 40 | 5 | cbvrabv | ⊢ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } = { 𝑦 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) } |
| 41 | 39 40 | elrab2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 42 | 41 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑣 ∈ On ∣ 𝑥 ∈ ( 𝑅1 ‘ 𝑣 ) } → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 | 8 37 42 | 3syl | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 30 44 | sseldd | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 46 | 45 | exp31 | ⊢ ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) ) |
| 47 | 46 | com3r | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) ) |
| 48 | 47 | rexlimdv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) ) |
| 49 | 48 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 50 | r1suc | ⊢ ( suc ∪ ( 𝐹 “ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) | |
| 51 | 22 50 | ax-mp | ⊢ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) |
| 52 | 51 | eleq2i | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 53 | 1 | elpw | ⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 54 | dfss3 | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) | |
| 55 | 52 53 54 | 3bitri | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑅1 ‘ suc ∪ ( 𝐹 “ 𝐴 ) ) ) |
| 56 | 49 55 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( 𝐹 “ 𝐴 ) ) ) |