This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
| tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | ||
| Assertion | tz9.12lem2 | ⊢ suc ∪ ( 𝐹 “ 𝐴 ) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12lem.1 | ⊢ 𝐴 ∈ V | |
| 2 | tz9.12lem.2 | ⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
| 3 | 1 2 | tz9.12lem1 | ⊢ ( 𝐹 “ 𝐴 ) ⊆ On |
| 4 | 2 | funmpt2 | ⊢ Fun 𝐹 |
| 5 | 1 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝐴 ) ∈ V ) |
| 6 | 4 5 | ax-mp | ⊢ ( 𝐹 “ 𝐴 ) ∈ V |
| 7 | 6 | ssonunii | ⊢ ( ( 𝐹 “ 𝐴 ) ⊆ On → ∪ ( 𝐹 “ 𝐴 ) ∈ On ) |
| 8 | 3 7 | ax-mp | ⊢ ∪ ( 𝐹 “ 𝐴 ) ∈ On |
| 9 | 8 | onsuci | ⊢ suc ∪ ( 𝐹 “ 𝐴 ) ∈ On |