This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of TakeutiZaring p. 78. The main proof consists of tz9.12lem1 through tz9.12lem3 . (Contributed by NM, 22-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz9.12.1 | ⊢ 𝐴 ∈ V | |
| Assertion | tz9.12 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12.1 | ⊢ 𝐴 ∈ V | |
| 2 | eqid | ⊢ ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) = ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) | |
| 3 | 1 2 | tz9.12lem2 | ⊢ suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ∈ On |
| 4 | 3 | onsuci | ⊢ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ∈ On |
| 5 | 1 2 | tz9.12lem3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑦 = suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) | |
| 7 | 6 | eleq2d | ⊢ ( 𝑦 = suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) ) |
| 8 | 7 | rspcev | ⊢ ( ( suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ∈ On ∧ 𝐴 ∈ ( 𝑅1 ‘ suc suc ∪ ( ( 𝑧 ∈ V ↦ ∩ { 𝑣 ∈ On ∣ 𝑧 ∈ ( 𝑅1 ‘ 𝑣 ) } ) “ 𝐴 ) ) ) → ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 9 | 4 5 8 | sylancr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∃ 𝑦 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |