This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered pair abstraction G defined in the hypothesis is a function. This was a lemma for tz7.44-1 , tz7.44-2 , and tz7.44-3 when they used that definition of G . Now, they use the maps-to df-mpt idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz7.44lem1.1 | ⊢ 𝐺 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } | |
| Assertion | tz7.44lem1 | ⊢ Fun 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44lem1.1 | ⊢ 𝐺 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } | |
| 2 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } ↔ ∀ 𝑥 ∃* 𝑦 ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) ) | |
| 3 | fvex | ⊢ ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∈ V | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | rnexg | ⊢ ( 𝑥 ∈ V → ran 𝑥 ∈ V ) | |
| 6 | uniexg | ⊢ ( ran 𝑥 ∈ V → ∪ ran 𝑥 ∈ V ) | |
| 7 | 4 5 6 | mp2b | ⊢ ∪ ran 𝑥 ∈ V |
| 8 | nlim0 | ⊢ ¬ Lim ∅ | |
| 9 | dm0 | ⊢ dom ∅ = ∅ | |
| 10 | limeq | ⊢ ( dom ∅ = ∅ → ( Lim dom ∅ ↔ Lim ∅ ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( Lim dom ∅ ↔ Lim ∅ ) |
| 12 | 8 11 | mtbir | ⊢ ¬ Lim dom ∅ |
| 13 | dmeq | ⊢ ( 𝑥 = ∅ → dom 𝑥 = dom ∅ ) | |
| 14 | limeq | ⊢ ( dom 𝑥 = dom ∅ → ( Lim dom 𝑥 ↔ Lim dom ∅ ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑥 = ∅ → ( Lim dom 𝑥 ↔ Lim dom ∅ ) ) |
| 16 | 15 | biimpa | ⊢ ( ( 𝑥 = ∅ ∧ Lim dom 𝑥 ) → Lim dom ∅ ) |
| 17 | 12 16 | mto | ⊢ ¬ ( 𝑥 = ∅ ∧ Lim dom 𝑥 ) |
| 18 | 3 7 17 | moeq3 | ⊢ ∃* 𝑦 ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) |
| 19 | 2 18 | mpgbir | ⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } |
| 20 | 1 | funeqi | ⊢ ( Fun 𝐺 ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) ∨ ( ¬ ( 𝑥 = ∅ ∨ Lim dom 𝑥 ) ∧ 𝑦 = ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ∨ ( Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥 ) ) } ) |
| 21 | 19 20 | mpbir | ⊢ Fun 𝐺 |