This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of F at (/) . Part 1 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.44.1 | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| tz7.44.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) | ||
| tz7.44-1.3 | ⊢ 𝐴 ∈ V | ||
| Assertion | tz7.44-1 | ⊢ ( ∅ ∈ 𝑋 → ( 𝐹 ‘ ∅ ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44.1 | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) | |
| 2 | tz7.44.2 | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ) | |
| 3 | tz7.44-1.3 | ⊢ 𝐴 ∈ V | |
| 4 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) | |
| 5 | reseq2 | ⊢ ( 𝑦 = ∅ → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ ∅ ) ) | |
| 6 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝐹 ↾ 𝑦 ) = ∅ ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) = ( 𝐺 ‘ ∅ ) ) |
| 9 | 4 8 | eqeq12d | ⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑦 ) ) ↔ ( 𝐹 ‘ ∅ ) = ( 𝐺 ‘ ∅ ) ) ) |
| 10 | 9 2 | vtoclga | ⊢ ( ∅ ∈ 𝑋 → ( 𝐹 ‘ ∅ ) = ( 𝐺 ‘ ∅ ) ) |
| 11 | 0ex | ⊢ ∅ ∈ V | |
| 12 | iftrue | ⊢ ( 𝑥 = ∅ → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐻 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = 𝐴 ) | |
| 13 | 12 1 3 | fvmpt | ⊢ ( ∅ ∈ V → ( 𝐺 ‘ ∅ ) = 𝐴 ) |
| 14 | 11 13 | ax-mp | ⊢ ( 𝐺 ‘ ∅ ) = 𝐴 |
| 15 | 10 14 | eqtrdi | ⊢ ( ∅ ∈ 𝑋 → ( 𝐹 ‘ ∅ ) = 𝐴 ) |